Merge branch 'dev' into encoder

Continue working on encoder, get latest version
This commit is contained in:
jonny_jr9 2024-02-12 13:04:14 +01:00
commit 573f0779fe
60 changed files with 9145 additions and 248 deletions

12
.gitignore vendored
View File

@ -1,12 +1,18 @@
# ESP-IDF
build
sdkconfig
sdkconfig.old
dependencies.lock
# VIM files
*.swp
*.swo
**/.cache
# drawio
*.dtmp
*.bkp
# React
@ -24,3 +30,7 @@ yarn-error.log*
.env.development.local
.env.test.local
.env.production.local
# other
octave-workspace

View File

@ -1,5 +1,7 @@
Firmware for a homemade automated electric armchair.
More details about this project: https://pfusch.zone/electric-armchair
More details about this project:
V1: https://pfusch.zone/electric-armchair
V2: https://pfusch.zone/electric-armchair-v2
@ -25,7 +27,7 @@ npm install
# Compilation
# Building the Project
## react-webapp
For the webapp to work on the esp32 it has to be built.
When flashing, the folder react-app/build is flashed to siffs (which is used as webroot) onto the esp32.
@ -45,10 +47,11 @@ Note: Use `npm start` for starting the webapp locally for testing
```bash
source /opt/esp-idf/export.sh
```
(run once in terminal)
(run once per terminal)
### Compile
```bash
cd board_single
idf.py build
```
@ -60,7 +63,7 @@ idf.py build
```bash
idf.py flash
```
- once "connecting...' successfully, BOOT button can be released
- once "connecting...' was successfully, BOOT button can be released
### Monitor
- connect FTDI programmer to board (VCC to VCC; TX to RX; RX to TX)
@ -93,8 +96,8 @@ A diagram which shows what components are connected to which terminals of the pc
- Anti slip regulation
- Self driving algorithm
- Lights
- drinks holder
- improved webinterface
- Improved webinterface
- App
@ -102,8 +105,6 @@ A diagram which shows what components are connected to which terminals of the pc
**Add switch functions**
- set loglevel
- define max-speed
- calibrate joystick (min, max, center)
- testing mode / dry-run
@ -139,5 +140,9 @@ Control armchair via virtual joystick on a webinterface.
**Todo**
- Set parameters
- Control other modes
- max duty
- max current
- Control other modes e.g. massage
- Execute preset movement commands
- Change seating position
also see github issue

View File

@ -2,10 +2,8 @@ idf_component_register(
SRCS
"main.cpp"
"config.cpp"
"joystick.cpp"
"control.cpp"
"button.cpp"
"http.cpp"
"auto.cpp"
"uart.cpp"
"encoder.cpp"
@ -13,4 +11,4 @@ idf_component_register(
"."
)
spiffs_create_partition_image(spiffs ../react-app/build FLASH_IN_PROJECT)
spiffs_create_partition_image(spiffs ../../react-app/build FLASH_IN_PROJECT)

1414
board_control/sdkconfig Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,11 +1,8 @@
idf_component_register(
SRCS
"main.cpp"
"motordrivers.cpp"
"motorctl.cpp"
"config.cpp"
"fan.cpp"
"currentsensor.cpp"
"uart.cpp"
INCLUDE_DIRS
"."

View File

@ -1,3 +1,4 @@
#include "config.hpp"
//===================================
@ -6,8 +7,9 @@
//--- configure left motor (hardware) ---
single100a_config_t configDriverLeft = {
.gpio_pwm = GPIO_NUM_26,
.gpio_a = GPIO_NUM_16,
.gpio_b = GPIO_NUM_4,
.gpio_a = GPIO_NUM_4,
.gpio_b = GPIO_NUM_16,
.gpio_brakeRelay = GPIO_NUM_5, //power mosfet 2
.ledc_timer = LEDC_TIMER_0,
.ledc_channel = LEDC_CHANNEL_0,
.aEnabledPinState = false, //-> pins inverted (mosfets)
@ -20,11 +22,12 @@ single100a_config_t configDriverLeft = {
single100a_config_t configDriverRight = {
.gpio_pwm = GPIO_NUM_27,
.gpio_a = GPIO_NUM_2,
.gpio_b = GPIO_NUM_14,
.gpio_b = GPIO_NUM_15,
.gpio_brakeRelay = GPIO_NUM_18, //power mosfet 1
.ledc_timer = LEDC_TIMER_1,
.ledc_channel = LEDC_CHANNEL_1,
.aEnabledPinState = false, //-> pin inverted (mosfet)
.bEnabledPinState = true, //-> not inverted (direct)
.aEnabledPinState = false, //-> pins inverted (mosfets)
.bEnabledPinState = false,
.resolution = LEDC_TIMER_11_BIT,
.pwmFreq = 10000
};
@ -35,8 +38,8 @@ single100a_config_t configDriverRight = {
motorctl_config_t configMotorControlLeft = {
.msFadeAccel = 1900, //acceleration of the motor (ms it takes from 0% to 100%)
.msFadeDecel = 1000, //deceleration of the motor (ms it takes from 100% to 0%)
.currentLimitEnabled = true,
.currentSensor_adc = ADC1_CHANNEL_6, //GPIO34
.currentLimitEnabled = false,
.currentSensor_adc = ADC1_CHANNEL_0, //GPIO36
.currentSensor_ratedCurrent = 50,
.currentMax = 30,
.deadTimeMs = 900 //minimum time motor is off between direction change
@ -46,8 +49,8 @@ motorctl_config_t configMotorControlLeft = {
motorctl_config_t configMotorControlRight = {
.msFadeAccel = 1900, //acceleration of the motor (ms it takes from 0% to 100%)
.msFadeDecel = 1000, //deceleration of the motor (ms it takes from 100% to 0%)
.currentLimitEnabled = true,
.currentSensor_adc = ADC1_CHANNEL_4, //GPIO32
.currentLimitEnabled = false,
.currentSensor_adc = ADC1_CHANNEL_3, //GPIO39
.currentSensor_ratedCurrent = 50,
.currentMax = 30,
.deadTimeMs = 900 //minimum time motor is off between direction change
@ -73,10 +76,22 @@ fan_config_t configCooling = {
//===== create global objects =====
//=================================
//TODO outsource global variables to e.g. global.cpp and only config options here?
single100a motorDriverLeft(configDriverLeft);
single100a motorDriverRight(configDriverRight);
//--- controlledMotor ---
//functions for updating the duty via certain/current driver that can then be passed to controlledMotor
//-> makes it possible to easily use different motor drivers
//note: ignoring warning "capture of variable with non-automatic storage duration", since sabertoothDriver object does not get destroyed anywhere - no lifetime issue
motorSetCommandFunc_t setLeftFunc = [&motorDriverLeft](motorCommand_t cmd) {
motorDriverLeft.set(cmd);
};
motorSetCommandFunc_t setRightFunc = [&motorDriverRight](motorCommand_t cmd) {
motorDriverRight.set(cmd);
};
//create controlled motor instances (motorctl.hpp)
controlledMotor motorLeft(configDriverLeft, configMotorControlLeft);
controlledMotor motorRight(configDriverRight, configMotorControlRight);
controlledMotor motorLeft(setLeftFunc, configMotorControlLeft);
controlledMotor motorRight(setRightFunc, configMotorControlRight);
//create buzzer object on pin 12 with gap between queued events of 100ms
buzzer_t buzzer(GPIO_NUM_12, 100);

View File

@ -14,12 +14,20 @@ extern "C"
#include "driver/ledc.h"
//custom C files
//custom C files
#include "wifi.h"
}
//custom C++ files
#include "config.hpp"
#include "uart.hpp"
#include "speedsensor.hpp"
//============================
//======= TESTING MODE =======
//============================
//do not start the actual tasks for controlling the armchair
#define TESTING_MODE
//=========================
//======= UART TEST =======
@ -28,13 +36,22 @@ extern "C"
//disables other functionality
//#define UART_TEST_ONLY
//==========================
//======= BRAKE TEST =======
//==========================
//only run brake-test (ignore uart input)
//#define BRAKE_TEST_ONLY
//====================-======
//==== SPEED SENSOR TEST ====
//======================-====
//only run speed-sensor test
#define SPEED_SENSOR_TEST
//tag for logging
static const char * TAG = "main";
#ifndef UART_TEST_ONLY
//====================================
//========== motorctl task ===========
//====================================
@ -92,8 +109,8 @@ void setLoglevels(void){
//--- set loglevel for individual tags ---
esp_log_level_set("main", ESP_LOG_INFO);
esp_log_level_set("buzzer", ESP_LOG_ERROR);
//esp_log_level_set("motordriver", ESP_LOG_INFO);
//esp_log_level_set("motor-control", ESP_LOG_DEBUG);
esp_log_level_set("motordriver", ESP_LOG_VERBOSE);
esp_log_level_set("motor-control", ESP_LOG_INFO);
//esp_log_level_set("evaluatedJoystick", ESP_LOG_DEBUG);
//esp_log_level_set("joystickCommands", ESP_LOG_DEBUG);
esp_log_level_set("button", ESP_LOG_INFO);
@ -105,22 +122,25 @@ void setLoglevels(void){
esp_log_level_set("uart_common", ESP_LOG_INFO);
esp_log_level_set("uart", ESP_LOG_INFO);
//esp_log_level_set("current-sensors", ESP_LOG_INFO);
esp_log_level_set("speedSensor", ESP_LOG_WARN);
}
#endif
//=================================
//=========== app_main ============
//=================================
extern "C" void app_main(void) {
#ifndef UART_TEST_ONLY
//---- define log levels ----
setLoglevels();
#ifndef TESTING_MODE
//enable 5V volate regulator
gpio_pad_select_gpio(GPIO_NUM_17);
gpio_set_direction(GPIO_NUM_17, GPIO_MODE_OUTPUT);
gpio_set_level(GPIO_NUM_17, 1);
//---- define log levels ----
setLoglevels();
//----------------------------------------------
//--- create task for controlling the motors ---
@ -147,18 +167,76 @@ extern "C" void app_main(void) {
#ifndef BRAKE_TEST_ONLY
//-------------------------------------------
//--- create tasks for uart communication ---
//-------------------------------------------
uart_init();
xTaskCreate(task_uartReceive, "task_uartReceive", 4096, NULL, 10, NULL);
xTaskCreate(task_uartSend, "task_uartSend", 4096, NULL, 10, NULL);
#endif
//--- main loop ---
#ifdef SPEED_SENSOR_TEST
speedSensor_config_t speedRight_config{
.gpioPin = GPIO_NUM_18,
.degreePerGroup = 72,
.tireCircumferenceMeter = 0.69,
.directionInverted = false,
.logName = "speedRight",
};
speedSensor speedRight (speedRight_config);
#endif
//---------------------------
//-------- main loop --------
//---------------------------
//does nothing except for testing things
while(1){
#ifdef SPEED_SENSOR_TEST
vTaskDelay(100 / portTICK_PERIOD_MS);
//speedRight.getRpm();
ESP_LOGI(TAG, "speedsensor-test: rpm=%fRPM, speed=%fkm/h dir=%d, pulseCount=%d, p1=%d, p2=%d, p3=%d lastEdgetime=%d", speedRight.getRpm(), speedRight.getKmph(), speedRight.direction, speedRight.pulseCounter, (int)speedRight.pulseDurations[0]/1000, (int)speedRight.pulseDurations[1]/1000, (int)speedRight.pulseDurations[2]/1000,(int)speedRight.lastEdgeTime);
#endif
#ifdef BRAKE_TEST_ONLY
//test relays at standstill
ESP_LOGW("brake-test", "test relays via motorctl");
//turn on
motorRight.setTarget(motorstate_t::BRAKE, 0);
vTaskDelay(500 / portTICK_PERIOD_MS);
motorRight.setTarget(motorstate_t::BRAKE, 0);
vTaskDelay(1000 / portTICK_PERIOD_MS);
//turn off
motorRight.setTarget(motorstate_t::IDLE, 0);
vTaskDelay(500 / portTICK_PERIOD_MS);
motorRight.setTarget(motorstate_t::IDLE, 0);
vTaskDelay(1000 / portTICK_PERIOD_MS);
//go forward and brake
ESP_LOGW("brake-test", "go forward 30%% then brake");
motorRight.setTarget(motorstate_t::FWD, 30);
vTaskDelay(1000 / portTICK_PERIOD_MS);
motorRight.setTarget(motorstate_t::BRAKE, 0);
vTaskDelay(3000 / portTICK_PERIOD_MS);
//brake partial
ESP_LOGW("brake-test", "go forward 30%% then brake partial 10%%, hold for 5sec");
motorRight.setTarget(motorstate_t::FWD, 30);
vTaskDelay(1000 / portTICK_PERIOD_MS);
motorRight.setTarget(motorstate_t::BRAKE, 10);
vTaskDelay(5000 / portTICK_PERIOD_MS);
//reset to idle
motorRight.setTarget(motorstate_t::IDLE, 0);
#endif
//--- test controlledMotor --- (ramp)
// //brake for 1 s

View File

@ -1,126 +0,0 @@
#include "motordrivers.hpp"
//TODO: move from ledc to mcpwm?
//https://docs.espressif.com/projects/esp-idf/en/v4.3/esp32/api-reference/peripherals/mcpwm.html#
//https://github.com/espressif/esp-idf/tree/v4.3/examples/peripherals/mcpwm/mcpwm_basic_config
//Note fade functionality provided by LEDC would be very useful but unfortunately is not usable here because:
//"Due to hardware limitations, there is no way to stop a fade before it reaches its target duty."
//tag for logging
static const char * TAG = "motordriver";
//====================================
//===== single100a motor driver ======
//====================================
//-----------------------------
//-------- constructor --------
//-----------------------------
//copy provided struct with all configuration and run init function
single100a::single100a(single100a_config_t config_f){
config = config_f;
init();
}
//----------------------------
//---------- init ------------
//----------------------------
//function to initialize pwm output, gpio pins and calculate maxDuty
void single100a::init(){
//--- configure ledc timer ---
ledc_timer_config_t ledc_timer;
ledc_timer.speed_mode = LEDC_HIGH_SPEED_MODE;
ledc_timer.timer_num = config.ledc_timer;
ledc_timer.duty_resolution = config.resolution; //13bit gives max 5khz freq
ledc_timer.freq_hz = config.pwmFreq;
ledc_timer.clk_cfg = LEDC_AUTO_CLK;
//apply configuration
ledc_timer_config(&ledc_timer);
//--- configure ledc channel ---
ledc_channel_config_t ledc_channel;
ledc_channel.channel = config.ledc_channel;
ledc_channel.duty = 0;
ledc_channel.gpio_num = config.gpio_pwm;
ledc_channel.speed_mode = LEDC_HIGH_SPEED_MODE;
ledc_channel.hpoint = 0;
ledc_channel.timer_sel = config.ledc_timer;
ledc_channel.intr_type = LEDC_INTR_DISABLE;
ledc_channel.flags.output_invert = 0; //TODO: add config option to invert the pwm output?
//apply configuration
ledc_channel_config(&ledc_channel);
//--- define gpio pins as outputs ---
gpio_pad_select_gpio(config.gpio_a);
gpio_set_direction(config.gpio_a, GPIO_MODE_OUTPUT);
gpio_pad_select_gpio(config.gpio_b);
gpio_set_direction(config.gpio_b, GPIO_MODE_OUTPUT);
//--- calculate max duty according to selected resolution ---
dutyMax = pow(2, ledc_timer.duty_resolution) -1;
ESP_LOGI(TAG, "initialized single100a driver");
ESP_LOGI(TAG, "resolution=%dbit, dutyMax value=%d, resolution=%.4f %%", ledc_timer.duty_resolution, dutyMax, 100/(float)dutyMax);
}
//---------------------------
//----------- set -----------
//---------------------------
//function to put the h-bridge module in the desired state and duty cycle
void single100a::set(motorstate_t state_f, float duty_f){
//scale provided target duty in percent to available resolution for ledc
uint32_t dutyScaled;
if (duty_f > 100) { //target duty above 100%
dutyScaled = dutyMax;
} else if (duty_f <= 0) { //target at or below 0%
state_f = motorstate_t::IDLE;
dutyScaled = 0;
} else { //target duty 0-100%
//scale duty to available resolution
dutyScaled = duty_f / 100 * dutyMax;
}
//put the single100a h-bridge module in the desired state update duty-cycle
switch (state_f){
case motorstate_t::IDLE:
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, dutyScaled);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
//TODO: to fix bugged state of h-bridge module when idle and start again, maybe try to leave pwm signal on for some time before updating a/b pins?
//no brake: (freewheel)
//gpio_set_level(config.gpio_a, config.aEnabledPinState);
//gpio_set_level(config.gpio_b, !config.bEnabledPinState);
gpio_set_level(config.gpio_a, config.aEnabledPinState);
gpio_set_level(config.gpio_b, config.bEnabledPinState);
break;
case motorstate_t::BRAKE:
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, 0);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
//brake:
gpio_set_level(config.gpio_a, !config.aEnabledPinState);
gpio_set_level(config.gpio_b, !config.bEnabledPinState);
break;
case motorstate_t::FWD:
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, dutyScaled);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
//forward:
gpio_set_level(config.gpio_a, config.aEnabledPinState);
gpio_set_level(config.gpio_b, !config.bEnabledPinState);
break;
case motorstate_t::REV:
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, dutyScaled);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
//reverse:
gpio_set_level(config.gpio_a, !config.aEnabledPinState);
gpio_set_level(config.gpio_b, config.bEnabledPinState);
break;
}
ESP_LOGD(TAG, "set module to state=%s, duty=%d/%d, duty_input=%.3f%%", motorstateStr[(int)state_f], dutyScaled, dutyMax, duty_f);
}

View File

@ -1,62 +0,0 @@
#pragma once
extern "C"
{
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "esp_log.h"
#include "driver/ledc.h"
#include "esp_err.h"
}
#include <cmath>
//====================================
//===== single100a motor driver ======
//====================================
//--------------------------------------------
//---- struct, enum, variable declarations ---
//--------------------------------------------
//motorstate_t, motorstateStr outsourced to common/types.hpp
#include "types.hpp"
//struct with all config parameters for single100a motor driver
typedef struct single100a_config_t {
gpio_num_t gpio_pwm;
gpio_num_t gpio_a;
gpio_num_t gpio_b;
ledc_timer_t ledc_timer;
ledc_channel_t ledc_channel;
bool aEnabledPinState;
bool bEnabledPinState;
ledc_timer_bit_t resolution;
int pwmFreq;
} single100a_config_t;
//--------------------------------
//------- single100a class -------
//--------------------------------
class single100a {
public:
//--- constructor ---
single100a(single100a_config_t config_f); //provide config struct (see above)
//--- functions ---
void set(motorstate_t state, float duty_f = 0); //set mode and duty of the motor (see motorstate_t above)
//TODO: add functions to get the current state and duty
private:
//--- functions ---
void init(); //initialize pwm and gpio outputs, calculate maxDuty
//--- variables ---
single100a_config_t config;
uint32_t dutyMax;
motorstate_t state = motorstate_t::IDLE;
};

1414
board_motorctl/sdkconfig Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,9 @@
# For more information about build system see
# https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/build-system.html
# The following five lines of boilerplate have to be in your project's
# CMakeLists in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
set(EXTRA_COMPONENT_DIRS "../components ../common")
project(armchair-singleBoard)

View File

@ -0,0 +1,9 @@
dependencies:
idf:
component_hash: null
source:
type: idf
version: 4.4.4
manifest_hash: dcf4d39b94252de130019eadceb989d72b0dbc26b552cfdcbb50f6da531d2b92
target: esp32
version: 1.0.0

View File

@ -0,0 +1,14 @@
idf_component_register(
SRCS
"main.cpp"
"config.cpp"
"control.cpp"
"button.cpp"
"fan.cpp"
"auto.cpp"
"display.cpp"
INCLUDE_DIRS
"."
)
spiffs_create_partition_image(spiffs ../../react-app/build FLASH_IN_PROJECT)

View File

@ -0,0 +1,88 @@
#include "auto.hpp"
#include "config.hpp"
//tag for logging
static const char * TAG = "automatedArmchair";
//=============================
//======== constructor ========
//=============================
automatedArmchair::automatedArmchair(void) {
//create command queue
commandQueue = xQueueCreate( 32, sizeof( commandSimple_t ) ); //TODO add max size to config?
}
//==============================
//====== generateCommands ======
//==============================
motorCommands_t automatedArmchair::generateCommands(auto_instruction_t * instruction) {
//reset instruction
*instruction = auto_instruction_t::NONE;
//check if previous command is finished
if ( esp_log_timestamp() > timestampCmdFinished ) {
//get next command from queue
if( xQueueReceive( commandQueue, &cmdCurrent, pdMS_TO_TICKS(500) ) ) {
ESP_LOGI(TAG, "running next command from queue...");
//copy instruction to be provided to control task
*instruction = cmdCurrent.instruction;
//set acceleration / fading parameters according to command
motorLeft.setFade(fadeType_t::DECEL, cmdCurrent.fadeDecel);
motorRight.setFade(fadeType_t::DECEL, cmdCurrent.fadeDecel);
motorLeft.setFade(fadeType_t::ACCEL, cmdCurrent.fadeAccel);
motorRight.setFade(fadeType_t::ACCEL, cmdCurrent.fadeAccel);
//calculate timestamp the command is finished
timestampCmdFinished = esp_log_timestamp() + cmdCurrent.msDuration;
//copy the new commands
motorCommands = cmdCurrent.motorCmds;
} else { //queue empty
ESP_LOGD(TAG, "no new command in queue -> set motors to IDLE");
motorCommands = motorCmds_bothMotorsIdle;
}
} else { //previous command still running
ESP_LOGD(TAG, "command still running -> no change");
}
//TODO also return instructions via call by reference
return motorCommands;
}
//============================
//======== addCommand ========
//============================
//function that adds a basic command to the queue
void automatedArmchair::addCommand(commandSimple_t command) {
//add command to queue
if ( xQueueSend( commandQueue, ( void * )&command, ( TickType_t ) 0 ) ){
ESP_LOGI(TAG, "Successfully inserted command to queue");
} else {
ESP_LOGE(TAG, "Failed to insert new command to queue");
}
}
void automatedArmchair::addCommands(commandSimple_t commands[], size_t count) {
for (int i = 0; i < count; i++) {
ESP_LOGI(TAG, "Reading command no. %d from provided array", i);
addCommand(commands[i]);
}
}
//===============================
//======== clearCommands ========
//===============================
//function that deletes all pending/queued commands
//e.g. when switching modes
motorCommands_t automatedArmchair::clearCommands() {
//clear command queue
xQueueReset( commandQueue );
ESP_LOGW(TAG, "command queue was successfully emptied");
//return commands for idling both motors
motorCommands = motorCmds_bothMotorsIdle;
return motorCmds_bothMotorsIdle;
}

134
board_single/main/auto.hpp Normal file
View File

@ -0,0 +1,134 @@
#pragma once
extern "C"
{
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
#include "esp_err.h"
}
#include "freertos/queue.h"
#include <cmath>
#include "motorctl.hpp"
//--------------------------------------------
//---- struct, enum, variable declarations ---
//--------------------------------------------
//enum for special instructions / commands to be run in control task
enum class auto_instruction_t { NONE, SWITCH_PREV_MODE, SWITCH_JOYSTICK_MODE, RESET_ACCEL_DECEL, RESET_ACCEL, RESET_DECEL };
//struct for a simple command
//e.g. put motors in a certain state for certain time
typedef struct commandSimple_t{
motorCommands_t motorCmds;
uint32_t msDuration;
uint32_t fadeDecel;
uint32_t fadeAccel;
auto_instruction_t instruction;
} commandSimple_t;
//------------------------------------
//----- automatedArmchair class -----
//------------------------------------
class automatedArmchair {
public:
//--- methods ---
//constructor
automatedArmchair(void);
//function to generate motor commands
//can be also seen as handle function
//TODO: go with other approach: separate task for handling auto mode
// - receive commands with queue anyways
// - => use delay function
// - have a queue that outputs current motor state/commands -> repeatedly check the queue in control task
//function that handles automatic driving and returns motor commands
//also provides instructions to be executed in control task via pointer
motorCommands_t generateCommands(auto_instruction_t * instruction);
//function that adds a basic command to the queue
void addCommand(commandSimple_t command);
//function that adds an array of basic commands to queue
void addCommands(commandSimple_t commands[], size_t count);
//function that deletes all pending/queued commands
motorCommands_t clearCommands();
private:
//--- methods ---
//--- objects ---
//TODO: add buzzer here
//--- variables ---
//queue for storing pending commands
QueueHandle_t commandQueue = NULL;
//current running command
commandSimple_t cmdCurrent;
//timestamp current command is finished
uint32_t timestampCmdFinished = 0;
motorCommands_t motorCommands;
//command preset for idling motors
const motorCommand_t motorCmd_motorIdle = {
.state = motorstate_t::IDLE,
.duty = 0
};
const motorCommands_t motorCmds_bothMotorsIdle = {
.left = motorCmd_motorIdle,
.right = motorCmd_motorIdle
};
};
//=========== EXAMPLE USAGE ============
//the following was once used in button.cpp to make move that ejects the leg support of armchair v1
/**
if (trigger){
//define commands
cmds[0] =
{
.motorCmds = {
.left = {motorstate_t::REV, 90},
.right = {motorstate_t::REV, 90}
},
.msDuration = 1200,
.fadeDecel = 800,
.fadeAccel = 1300,
.instruction = auto_instruction_t::NONE
};
cmds[1] =
{
.motorCmds = {
.left = {motorstate_t::FWD, 70},
.right = {motorstate_t::FWD, 70}
},
.msDuration = 70,
.fadeDecel = 0,
.fadeAccel = 300,
.instruction = auto_instruction_t::NONE
};
cmds[2] =
{
.motorCmds = {
.left = {motorstate_t::IDLE, 0},
.right = {motorstate_t::IDLE, 0}
},
.msDuration = 10,
.fadeDecel = 800,
.fadeAccel = 1300,
.instruction = auto_instruction_t::SWITCH_JOYSTICK_MODE
};
//send commands to automatedArmchair command queue
armchair.addCommands(cmds, 3);
//change mode to AUTO
control->changeMode(controlMode_t::AUTO);
return;
}
*/

View File

@ -0,0 +1,182 @@
extern "C"
{
#include <stdio.h>
#include <esp_system.h>
#include <esp_event.h>
#include "freertos/FreeRTOS.h"
#include "esp_log.h"
}
#include "button.hpp"
//tag for logging
static const char * TAG = "button";
//-----------------------------
//-------- constructor --------
//-----------------------------
buttonCommands::buttonCommands(gpio_evaluatedSwitch * button_f, evaluatedJoystick * joystick_f, controlledArmchair * control_f, buzzer_t * buzzer_f, controlledMotor * motorLeft_f, controlledMotor * motorRight_f){
//copy object pointers
button = button_f;
joystick = joystick_f;
control = control_f;
buzzer = buzzer_f;
motorLeft = motorLeft_f;
motorRight = motorRight_f;
//TODO declare / configure evaluatedSwitch here instead of config (unnecessary that button object is globally available - only used here)?
}
//----------------------------
//--------- action -----------
//----------------------------
//function that runs commands depending on a count value
void buttonCommands::action (uint8_t count, bool lastPressLong){
//--- variable declarations ---
bool decelEnabled; //for different beeping when toggling
commandSimple_t cmds[8]; //array for commands for automatedArmchair
//--- get joystick position ---
//joystickData_t stickData = joystick->getData();
//--- actions based on count ---
switch (count){
//no such command
default:
ESP_LOGE(TAG, "no command for count=%d defined", count);
buzzer->beep(3, 400, 100);
break;
case 1:
//restart contoller when 1x long pressed
if (lastPressLong){
ESP_LOGW(TAG, "RESTART");
buzzer->beep(1,1000,1);
vTaskDelay(500 / portTICK_PERIOD_MS);
//esp_restart();
//-> define joystick center or toggle freeze input (executed in control task)
control->sendButtonEvent(count); //TODO: always send button event to control task (not just at count=1) -> control.cpp has to be changed
return;
}
//note: disabled joystick calibration due to accidential trigger
//
// ESP_LOGW(TAG, "cmd %d: sending button event to control task", count);
// //-> define joystick center or toggle freeze input (executed in control task)
// control->sendButtonEvent(count); //TODO: always send button event to control task (not just at count=1) -> control.cpp has to be changed
break;
case 2:
//run automatic commands to lift leg support when pressed 1x short 1x long
if (lastPressLong){
ESP_LOGW(TAG, "cmd %d: toggle ADJUST_CHAIR", count);
control->toggleMode(controlMode_t::ADJUST_CHAIR);
}
//toggle idle when 2x pressed
else {
ESP_LOGW(TAG, "cmd %d: toggle IDLE", count);
control->toggleIdle(); //toggle between idle and previous/default mode
}
break;
case 3:
ESP_LOGW(TAG, "cmd %d: switch to JOYSTICK", count);
control->changeMode(controlMode_t::JOYSTICK); //switch to JOYSTICK mode
break;
case 4:
ESP_LOGW(TAG, "cmd %d: toggle between HTTP and JOYSTICK", count);
control->toggleModes(controlMode_t::HTTP, controlMode_t::JOYSTICK); //toggle between HTTP and JOYSTICK mode
break;
case 6:
ESP_LOGW(TAG, "cmd %d: toggle between MASSAGE and JOYSTICK", count);
control->toggleModes(controlMode_t::MASSAGE, controlMode_t::JOYSTICK); //toggle between MASSAGE and JOYSTICK mode
break;
case 8:
//toggle deceleration fading between on and off
//decelEnabled = motorLeft->toggleFade(fadeType_t::DECEL);
//motorRight->toggleFade(fadeType_t::DECEL);
decelEnabled = motorLeft->toggleFade(fadeType_t::ACCEL);
motorRight->toggleFade(fadeType_t::ACCEL);
ESP_LOGW(TAG, "cmd %d: toggle deceleration fading to: %d", count, (int)decelEnabled);
if (decelEnabled){
buzzer->beep(3, 60, 50);
} else {
buzzer->beep(1, 1000, 1);
}
break;
case 12:
ESP_LOGW(TAG, "cmd %d: sending button event to control task", count);
//-> toggle altStickMapping (executed in control task)
control->sendButtonEvent(count); //TODO: always send button event to control task (not just at count=1)?
break;
}
}
//-----------------------------
//------ startHandleLoop ------
//-----------------------------
//this function has to be started once in a separate task
//repeatedly evaluates and processes button events then takes the corresponding action
void buttonCommands::startHandleLoop() {
while(1) {
vTaskDelay(20 / portTICK_PERIOD_MS);
//run handle function of evaluatedSwitch object
button->handle();
//--- count button presses and run action ---
switch(state) {
case inputState_t::IDLE: //wait for initial button press
if (button->risingEdge) {
count = 1;
buzzer->beep(1, 65, 0);
timestamp_lastAction = esp_log_timestamp();
state = inputState_t::WAIT_FOR_INPUT;
ESP_LOGI(TAG, "first button press detected -> waiting for further events");
}
break;
case inputState_t::WAIT_FOR_INPUT: //wait for further presses
//button pressed again
if (button->risingEdge){
count++;
buzzer->beep(1, 65, 0);
timestamp_lastAction = esp_log_timestamp();
ESP_LOGI(TAG, "another press detected -> count=%d -> waiting for further events", count);
}
//timeout
else if (esp_log_timestamp() - timestamp_lastAction > 1000) {
state = inputState_t::IDLE;
buzzer->beep(count, 50, 50);
//TODO: add optional "bool wait" parameter to beep function to delay until finished beeping
ESP_LOGI(TAG, "timeout - running action function for count=%d", count);
//--- run action function ---
//check if still pressed
bool lastPressLong = false;
if (button->state == true){
//run special case when last press was longer than timeout
lastPressLong = true;
}
//run action function with current count of button presses
action(count, lastPressLong);
}
break;
}
}
}

View File

@ -0,0 +1,53 @@
#pragma once
#include "gpio_evaluateSwitch.hpp"
#include "buzzer.hpp"
#include "control.hpp"
#include "motorctl.hpp"
#include "auto.hpp"
#include "config.hpp"
#include "joystick.hpp"
//===================================
//====== buttonCommands class =======
//===================================
//class which runs commands depending on the count a button was pressed
class buttonCommands {
public:
//--- constructor ---
buttonCommands (
gpio_evaluatedSwitch * button_f,
evaluatedJoystick * joystick_f,
controlledArmchair * control_f,
buzzer_t * buzzer_f,
controlledMotor * motorLeft_f,
controlledMotor * motorRight_f
);
//--- functions ---
//the following function has to be started once in a separate task.
//repeatedly evaluates and processes button events then takes the corresponding action
void startHandleLoop();
private:
//--- functions ---
void action(uint8_t count, bool lastPressLong);
//--- objects ---
gpio_evaluatedSwitch* button;
evaluatedJoystick* joystick;
controlledArmchair * control;
buzzer_t* buzzer;
controlledMotor * motorLeft;
controlledMotor * motorRight;
//--- variables ---
uint8_t count = 0;
uint32_t timestamp_lastAction = 0;
enum class inputState_t {IDLE, WAIT_FOR_INPUT};
inputState_t state = inputState_t::IDLE;
};

View File

@ -0,0 +1,203 @@
#include "config.hpp"
//===================================
//======= motor configuration =======
//===================================
/* ==> currently using other driver
//--- configure left motor (hardware) ---
single100a_config_t configDriverLeft = {
.gpio_pwm = GPIO_NUM_26,
.gpio_a = GPIO_NUM_16,
.gpio_b = GPIO_NUM_4,
.ledc_timer = LEDC_TIMER_0,
.ledc_channel = LEDC_CHANNEL_0,
.aEnabledPinState = false, //-> pins inverted (mosfets)
.bEnabledPinState = false,
.resolution = LEDC_TIMER_11_BIT,
.pwmFreq = 10000
};
//--- configure right motor (hardware) ---
single100a_config_t configDriverRight = {
.gpio_pwm = GPIO_NUM_27,
.gpio_a = GPIO_NUM_2,
.gpio_b = GPIO_NUM_14,
.ledc_timer = LEDC_TIMER_1,
.ledc_channel = LEDC_CHANNEL_1,
.aEnabledPinState = false, //-> pin inverted (mosfet)
.bEnabledPinState = true, //-> not inverted (direct)
.resolution = LEDC_TIMER_11_BIT,
.pwmFreq = 10000
};
*/
//--- configure sabertooth driver --- (controls both motors in one instance)
sabertooth2x60_config_t sabertoothConfig = {
.gpio_TX = GPIO_NUM_25,
.uart_num = UART_NUM_2
};
//TODO add motor name string -> then use as log tag?
//--- configure left motor (contol) ---
motorctl_config_t configMotorControlLeft = {
.msFadeAccel = 1500, //acceleration of the motor (ms it takes from 0% to 100%)
.msFadeDecel = 1000, //deceleration of the motor (ms it takes from 100% to 0%)
.currentLimitEnabled = false,
.currentSensor_adc = ADC1_CHANNEL_4, //GPIO32
.currentSensor_ratedCurrent = 50,
.currentMax = 30,
.deadTimeMs = 0 //minimum time motor is off between direction change
};
//--- configure right motor (contol) ---
motorctl_config_t configMotorControlRight = {
.msFadeAccel = 1500, //acceleration of the motor (ms it takes from 0% to 100%)
.msFadeDecel = 1000, //deceleration of the motor (ms it takes from 100% to 0%)
.currentLimitEnabled = false,
.currentSensor_adc = ADC1_CHANNEL_5, //GPIO33
.currentSensor_ratedCurrent = 50,
.currentMax = 30,
.deadTimeMs = 0 //minimum time motor is off between direction change
};
//==============================
//======= control config =======
//==============================
control_config_t configControl = {
.defaultMode = controlMode_t::JOYSTICK, //default mode after startup and toggling IDLE
//--- timeout ---
.timeoutMs = 3*60*1000, //time of inactivity after which the mode gets switched to IDLE
.timeoutTolerancePer = 5, //percentage the duty can vary between timeout checks considered still inactive
//--- http mode ---
};
//===============================
//===== httpJoystick config =====
//===============================
httpJoystick_config_t configHttpJoystickMain{
.toleranceZeroX_Per = 1, //percentage around joystick axis the coordinate snaps to 0
.toleranceZeroY_Per = 6,
.toleranceEndPer = 2, //percentage before joystick end the coordinate snaps to 1/-1
.timeoutMs = 2500 //time no new data was received before the motors get turned off
};
//======================================
//======= joystick configuration =======
//======================================
joystick_config_t configJoystick = {
.adc_x = ADC1_CHANNEL_0, //GPIO36
.adc_y = ADC1_CHANNEL_3, //GPIO39
//percentage of joystick range the coordinate of the axis snaps to 0 (0-100)
.tolerance_zeroX_per = 7, //6
.tolerance_zeroY_per = 10, //7
//percentage of joystick range the coordinate snaps to -1 or 1 before configured "_max" or "_min" threshold (mechanical end) is reached (0-100)
.tolerance_end_per = 4,
//threshold the radius jumps to 1 before the stick is at max radius (range 0-1)
.tolerance_radius = 0.09,
//min and max adc values of each axis, !!!AFTER INVERSION!!! is applied:
.x_min = 1710, //=> x=-1
.x_max = 2980, //=> x=1
.y_min = 1700, //=> y=-1
.y_max = 2940, //=> y=1
//invert adc measurement
.x_inverted = true,
.y_inverted = true
};
//============================
//=== configure fan contol ===
//============================
fan_config_t configCooling = {
.gpio_fan = GPIO_NUM_13,
.dutyThreshold = 40,
.minOnMs = 1500,
.minOffMs = 3000,
.turnOffDelayMs = 5000,
};
//============================================
//======== speed sensor configuration ========
//============================================
speedSensor_config_t speedLeft_config{
.gpioPin = GPIO_NUM_5,
.degreePerGroup = 360/5,
.tireCircumferenceMeter = 210.0*3.141/1000.0,
.directionInverted = false,
.logName = "speedLeft",
};
speedSensor_config_t speedRight_config{
.gpioPin = GPIO_NUM_14,
.degreePerGroup = 360/12,
.tireCircumferenceMeter = 210.0*3.141/1000.0,
.directionInverted = true,
.logName = "speedRight",
};
//=================================
//===== create global objects =====
//=================================
//TODO outsource global variables to e.g. global.cpp and only config options here?
//create sabertooth motor driver instance
sabertooth2x60a sabertoothDriver(sabertoothConfig);
//--- controlledMotor ---
//functions for updating the duty via certain/current driver that can then be passed to controlledMotor
//-> makes it possible to easily use different motor drivers
//note: ignoring warning "capture of variable 'sabertoothDriver' with non-automatic storage duration", since sabertoothDriver object does not get destroyed anywhere - no lifetime issue
motorSetCommandFunc_t setLeftFunc = [&sabertoothDriver](motorCommand_t cmd) {
sabertoothDriver.setLeft(cmd);
};
motorSetCommandFunc_t setRightFunc = [&sabertoothDriver](motorCommand_t cmd) {
sabertoothDriver.setRight(cmd);
};
//create controlled motor instances (motorctl.hpp)
controlledMotor motorLeft(setLeftFunc, configMotorControlLeft);
controlledMotor motorRight(setRightFunc, configMotorControlRight);
//create speedsensor instances
speedSensor speedLeft (speedLeft_config);
speedSensor speedRight (speedRight_config);
//create global joystic instance (joystick.hpp)
evaluatedJoystick joystick(configJoystick);
//create global evaluated switch instance for button next to joystick
gpio_evaluatedSwitch buttonJoystick(GPIO_NUM_21, true, false); //pullup true, not inverted (switch to GND use pullup of controller)
//create buzzer object on pin 12 with gap between queued events of 100ms
buzzer_t buzzer(GPIO_NUM_12, 100);
//create global httpJoystick object (http.hpp)
httpJoystick httpJoystickMain(configHttpJoystickMain);
//create global control object (control.hpp)
controlledArmchair control(configControl, &buzzer, &motorLeft, &motorRight, &joystick, &httpJoystickMain);
//create global automatedArmchair object (for auto-mode) (auto.hpp)
automatedArmchair armchair;
//create global objects for controlling the chair position
// gpio_up, gpio_down, name
cControlledRest legRest(GPIO_NUM_4, GPIO_NUM_16, "legRest");
cControlledRest backRest(GPIO_NUM_2, GPIO_NUM_15, "backRest");

View File

@ -0,0 +1,56 @@
#pragma once
#include "motordrivers.hpp"
#include "motorctl.hpp"
#include "joystick.hpp"
#include "gpio_evaluateSwitch.hpp"
#include "buzzer.hpp"
#include "control.hpp"
#include "fan.hpp"
#include "http.hpp"
#include "auto.hpp"
#include "speedsensor.hpp"
#include "chairAdjust.hpp"
//in IDLE mode: set loglevel for evaluatedJoystick to DEBUG
//and repeatedly read joystick e.g. for manually calibrating / testing joystick
//#define JOYSTICK_LOG_IN_IDLE
//TODO outsource global variables to e.g. global.cpp and only config options here?
//create global controlledMotor instances for both motors
extern controlledMotor motorLeft;
extern controlledMotor motorRight;
//create global joystic instance
extern evaluatedJoystick joystick;
//create global evaluated switch instance for button next to joystick
extern gpio_evaluatedSwitch buttonJoystick;
//create global buzzer object
extern buzzer_t buzzer;
//create global control object
extern controlledArmchair control;
//create global automatedArmchair object (for auto-mode)
extern automatedArmchair armchair;
//create global httpJoystick object
//extern httpJoystick httpJoystickMain;
//configuration for fans / cooling
extern fan_config_t configCooling;
//create global objects for measuring speed
extern speedSensor speedLeft;
extern speedSensor speedRight;
//create global objects for controlling the chair position
extern cControlledRest legRest;
extern cControlledRest backRest;

View File

@ -0,0 +1,507 @@
extern "C"
{
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "esp_log.h"
#include "freertos/queue.h"
//custom C libraries
#include "wifi.h"
}
#include "config.hpp"
#include "control.hpp"
#include "chairAdjust.hpp"
//used definitions moved from config.hpp:
//#define JOYSTICK_TEST
//tag for logging
static const char * TAG = "control";
const char* controlModeStr[8] = {"IDLE", "JOYSTICK", "MASSAGE", "HTTP", "MQTT", "BLUETOOTH", "AUTO", "ADJUST_CHAIR"};
//-----------------------------
//-------- constructor --------
//-----------------------------
controlledArmchair::controlledArmchair (
control_config_t config_f,
buzzer_t * buzzer_f,
controlledMotor* motorLeft_f,
controlledMotor* motorRight_f,
evaluatedJoystick* joystick_f,
httpJoystick* httpJoystick_f
){
//copy configuration
config = config_f;
//copy object pointers
buzzer = buzzer_f;
motorLeft = motorLeft_f;
motorRight = motorRight_f;
joystick_l = joystick_f,
httpJoystickMain_l = httpJoystick_f;
//set default mode from config
modePrevious = config.defaultMode;
//TODO declare / configure controlled motors here instead of config (unnecessary that button object is globally available - only used here)?
}
//----------------------------------
//---------- Handle loop -----------
//----------------------------------
//function that repeatedly generates motor commands depending on the current mode
//also handles fading and current-limit
void controlledArmchair::startHandleLoop() {
while (1){
ESP_LOGV(TAG, "control task executing... mode=%s", controlModeStr[(int)mode]);
switch(mode) {
default:
mode = controlMode_t::IDLE;
break;
case controlMode_t::IDLE:
//copy preset commands for idling both motors
commands = cmds_bothMotorsIdle;
motorRight->setTarget(commands.right.state, commands.right.duty);
motorLeft->setTarget(commands.left.state, commands.left.duty);
vTaskDelay(200 / portTICK_PERIOD_MS);
#ifdef JOYSTICK_LOG_IN_IDLE
//get joystick data here (without using it)
//since loglevel is DEBUG, calculateion details is output
joystick_l->getData(); //get joystick data here
#endif
break;
case controlMode_t::JOYSTICK:
vTaskDelay(20 / portTICK_PERIOD_MS);
//get current joystick data with getData method of evaluatedJoystick
stickData = joystick_l->getData();
//additionaly scale coordinates (more detail in slower area)
joystick_scaleCoordinatesLinear(&stickData, 0.6, 0.35); //TODO: add scaling parameters to config
//generate motor commands
commands = joystick_generateCommandsDriving(stickData, altStickMapping);
//apply motor commands
motorRight->setTarget(commands.right.state, commands.right.duty);
motorLeft->setTarget(commands.left.state, commands.left.duty);
//TODO make motorctl.setTarget also accept motorcommand struct directly
break;
case controlMode_t::MASSAGE:
vTaskDelay(10 / portTICK_PERIOD_MS);
//--- read joystick ---
//only update joystick data when input not frozen
if (!freezeInput){
stickData = joystick_l->getData();
}
//--- generate motor commands ---
//pass joystick data from getData method of evaluatedJoystick to generateCommandsShaking function
commands = joystick_generateCommandsShaking(stickData);
//apply motor commands
motorRight->setTarget(commands.right.state, commands.right.duty);
motorLeft->setTarget(commands.left.state, commands.left.duty);
break;
case controlMode_t::HTTP:
//--- get joystick data from queue ---
//Note this function waits several seconds (httpconfig.timeoutMs) for data to arrive, otherwise Center data or NULL is returned
//TODO: as described above, when changing modes it might delay a few seconds for the change to apply
stickData = httpJoystickMain_l->getData();
//scale coordinates additionally (more detail in slower area)
joystick_scaleCoordinatesLinear(&stickData, 0.6, 0.4); //TODO: add scaling parameters to config
ESP_LOGD(TAG, "generating commands from x=%.3f y=%.3f radius=%.3f angle=%.3f", stickData.x, stickData.y, stickData.radius, stickData.angle);
//--- generate motor commands ---
//Note: timeout (no data received) is handled in getData method
commands = joystick_generateCommandsDriving(stickData, altStickMapping);
//--- apply commands to motors ---
//TODO make motorctl.setTarget also accept motorcommand struct directly
motorRight->setTarget(commands.right.state, commands.right.duty);
motorLeft->setTarget(commands.left.state, commands.left.duty);
break;
case controlMode_t::AUTO:
vTaskDelay(20 / portTICK_PERIOD_MS);
//generate commands
commands = armchair.generateCommands(&instruction);
//--- apply commands to motors ---
//TODO make motorctl.setTarget also accept motorcommand struct directly
motorRight->setTarget(commands.right.state, commands.right.duty);
motorLeft->setTarget(commands.left.state, commands.left.duty);
//process received instruction
switch (instruction) {
case auto_instruction_t::NONE:
break;
case auto_instruction_t::SWITCH_PREV_MODE:
toggleMode(controlMode_t::AUTO);
break;
case auto_instruction_t::SWITCH_JOYSTICK_MODE:
changeMode(controlMode_t::JOYSTICK);
break;
case auto_instruction_t::RESET_ACCEL_DECEL:
//enable downfading (set to default value)
motorLeft->setFade(fadeType_t::DECEL, true);
motorRight->setFade(fadeType_t::DECEL, true);
//set upfading to default value
motorLeft->setFade(fadeType_t::ACCEL, true);
motorRight->setFade(fadeType_t::ACCEL, true);
break;
case auto_instruction_t::RESET_ACCEL:
//set upfading to default value
motorLeft->setFade(fadeType_t::ACCEL, true);
motorRight->setFade(fadeType_t::ACCEL, true);
break;
case auto_instruction_t::RESET_DECEL:
//enable downfading (set to default value)
motorLeft->setFade(fadeType_t::DECEL, true);
motorRight->setFade(fadeType_t::DECEL, true);
break;
}
break;
case controlMode_t::ADJUST_CHAIR:
vTaskDelay(100 / portTICK_PERIOD_MS);
//--- read joystick ---
stickData = joystick_l->getData();
//--- idle motors ---
commands = cmds_bothMotorsIdle;
motorRight->setTarget(commands.right.state, commands.right.duty);
motorLeft->setTarget(commands.left.state, commands.left.duty);
//--- control armchair position with joystick input ---
controlChairAdjustment(joystick_l->getData(), &legRest, &backRest);
break;
//TODO: add other modes here
}
//--- run actions based on received button button event ---
//note: buttonCount received by sendButtonEvent method called from button.cpp
//TODO: what if variable gets set from other task during this code? -> mutex around this code
switch (buttonCount) {
case 1: //define joystick center or freeze input
if (mode == controlMode_t::JOYSTICK){
//joystick mode: calibrate joystick
joystick_l->defineCenter();
} else if (mode == controlMode_t::MASSAGE){
//massage mode: toggle freeze of input (lock joystick at current values)
freezeInput = !freezeInput;
if (freezeInput){
buzzer->beep(5, 40, 25);
} else {
buzzer->beep(1, 300, 100);
}
}
break;
case 12: //toggle alternative joystick mapping (reverse swapped)
altStickMapping = !altStickMapping;
if (altStickMapping){
buzzer->beep(6, 70, 50);
} else {
buzzer->beep(1, 500, 100);
}
break;
}
//--- reset button event --- (only one action per run)
if (buttonCount > 0){
ESP_LOGI(TAG, "resetting button event/count");
buttonCount = 0;
}
//-----------------------
//------ slow loop ------
//-----------------------
//this section is run about every 5s (+500ms)
if (esp_log_timestamp() - timestamp_SlowLoopLastRun > 5000) {
ESP_LOGV(TAG, "running slow loop... time since last run: %.1fs", (float)(esp_log_timestamp() - timestamp_SlowLoopLastRun)/1000);
timestamp_SlowLoopLastRun = esp_log_timestamp();
//run function which detects timeout (switch to idle)
handleTimeout();
}
}//end while(1)
}//end startHandleLoop
//-----------------------------------
//---------- resetTimeout -----------
//-----------------------------------
void controlledArmchair::resetTimeout(){
//TODO mutex
timestamp_lastActivity = esp_log_timestamp();
}
//------------------------------------
//--------- sendButtonEvent ----------
//------------------------------------
void controlledArmchair::sendButtonEvent(uint8_t count){
//TODO mutex - if not replaced with queue
ESP_LOGI(TAG, "setting button event");
buttonCount = count;
}
//------------------------------------
//---------- handleTimeout -----------
//------------------------------------
//percentage the duty can vary since last timeout check and still counts as incative
//TODO: add this to config
float inactivityTolerance = 10;
//local function that checks whether two values differ more than a given tolerance
bool validateActivity(float dutyOld, float dutyNow, float tolerance){
float dutyDelta = dutyNow - dutyOld;
if (fabs(dutyDelta) < tolerance) {
return false; //no significant activity detected
} else {
return true; //there was activity
}
}
//function that evaluates whether there is no activity/change on the motor duty for a certain time. If so, a switch to IDLE is issued. - has to be run repeatedly in a slow interval
void controlledArmchair::handleTimeout(){
//check for timeout only when not idling already
if (mode != controlMode_t::IDLE) {
//get current duty from controlled motor objects
float dutyLeftNow = motorLeft->getStatus().duty;
float dutyRightNow = motorRight->getStatus().duty;
//activity detected on any of the two motors
if (validateActivity(dutyLeft_lastActivity, dutyLeftNow, inactivityTolerance)
|| validateActivity(dutyRight_lastActivity, dutyRightNow, inactivityTolerance)
){
ESP_LOGD(TAG, "timeout check: [activity] detected since last check -> reset");
//reset last duty and timestamp
dutyLeft_lastActivity = dutyLeftNow;
dutyRight_lastActivity = dutyRightNow;
resetTimeout();
}
//no activity on any motor and msTimeout exceeded
else if (esp_log_timestamp() - timestamp_lastActivity > config.timeoutMs){
ESP_LOGI(TAG, "timeout check: [TIMEOUT], no activity for more than %.ds -> switch to idle", config.timeoutMs/1000);
//toggle to idle mode
toggleIdle();
}
else {
ESP_LOGD(TAG, "timeout check: [inactive], last activity %.1f s ago, timeout after %d s", (float)(esp_log_timestamp() - timestamp_lastActivity)/1000, config.timeoutMs/1000);
}
}
}
//-----------------------------------
//----------- changeMode ------------
//-----------------------------------
//function to change to a specified control mode
void controlledArmchair::changeMode(controlMode_t modeNew) {
//reset timeout timer
resetTimeout();
//exit if target mode is already active
if (mode == modeNew) {
ESP_LOGE(TAG, "changeMode: Already in target mode '%s' -> nothing to change", controlModeStr[(int)mode]);
return;
}
//copy previous mode
modePrevious = mode;
ESP_LOGW(TAG, "=== changing mode from %s to %s ===", controlModeStr[(int)mode], controlModeStr[(int)modeNew]);
//========== commands change FROM mode ==========
//run functions when changing FROM certain mode
switch(modePrevious){
default:
ESP_LOGI(TAG, "noting to execute when changing FROM this mode");
break;
case controlMode_t::IDLE:
#ifdef JOYSTICK_LOG_IN_IDLE
ESP_LOGI(TAG, "disabling debug output for 'evaluatedJoystick'");
esp_log_level_set("evaluatedJoystick", ESP_LOG_WARN); //FIXME: loglevel from config
#endif
buzzer->beep(1,200,100);
break;
case controlMode_t::HTTP:
ESP_LOGW(TAG, "switching from http mode -> disabling http and wifi");
//stop http server
ESP_LOGI(TAG, "disabling http server...");
http_stop_server();
//FIXME: make wifi function work here - currently starting wifi at startup (see notes main.cpp)
//stop wifi
//TODO: decide whether ap or client is currently used - which has to be disabled?
//ESP_LOGI(TAG, "deinit wifi...");
//wifi_deinit_client();
//wifi_deinit_ap();
ESP_LOGI(TAG, "done stopping http mode");
break;
case controlMode_t::MASSAGE:
ESP_LOGW(TAG, "switching from MASSAGE mode -> restoring fading, reset frozen input");
//TODO: fix issue when downfading was disabled before switching to massage mode - currently it gets enabled again here...
//enable downfading (set to default value)
motorLeft->setFade(fadeType_t::DECEL, true);
motorRight->setFade(fadeType_t::DECEL, true);
//set upfading to default value
motorLeft->setFade(fadeType_t::ACCEL, true);
motorRight->setFade(fadeType_t::ACCEL, true);
//reset frozen input state
freezeInput = false;
break;
case controlMode_t::AUTO:
ESP_LOGW(TAG, "switching from AUTO mode -> restoring fading to default");
//TODO: fix issue when downfading was disabled before switching to auto mode - currently it gets enabled again here...
//enable downfading (set to default value)
motorLeft->setFade(fadeType_t::DECEL, true);
motorRight->setFade(fadeType_t::DECEL, true);
//set upfading to default value
motorLeft->setFade(fadeType_t::ACCEL, true);
motorRight->setFade(fadeType_t::ACCEL, true);
break;
case controlMode_t::ADJUST_CHAIR:
ESP_LOGW(TAG, "switching from ADJUST_CHAIR mode => turning off adjustment motors...");
//prevent motors from being always on in case of mode switch while joystick is not in center thus motors currently moving
legRest.setState(REST_OFF);
backRest.setState(REST_OFF);
break;
}
//========== commands change TO mode ==========
//run functions when changing TO certain mode
switch(modeNew){
default:
ESP_LOGI(TAG, "noting to execute when changing TO this mode");
break;
case controlMode_t::IDLE:
buzzer->beep(1, 1500, 0);
#ifdef JOYSTICK_LOG_IN_IDLE
esp_log_level_set("evaluatedJoystick", ESP_LOG_DEBUG);
#endif
break;
case controlMode_t::ADJUST_CHAIR:
ESP_LOGW(TAG, "switching to ADJUST_CHAIR mode -> beep");
buzzer->beep(4,200,100);
break;
case controlMode_t::HTTP:
ESP_LOGW(TAG, "switching to http mode -> enabling http and wifi");
//start wifi
//TODO: decide wether ap or client should be started
ESP_LOGI(TAG, "init wifi...");
//FIXME: make wifi function work here - currently starting wifi at startup (see notes main.cpp)
//wifi_init_client();
//wifi_init_ap();
//wait for wifi
//ESP_LOGI(TAG, "waiting for wifi...");
//vTaskDelay(1000 / portTICK_PERIOD_MS);
//start http server
ESP_LOGI(TAG, "init http server...");
http_init_server();
ESP_LOGI(TAG, "done initializing http mode");
break;
case controlMode_t::MASSAGE:
ESP_LOGW(TAG, "switching to MASSAGE mode -> reducing fading");
uint32_t shake_msFadeAccel = 500; //TODO: move this to config
//disable downfading (max. deceleration)
motorLeft->setFade(fadeType_t::DECEL, false);
motorRight->setFade(fadeType_t::DECEL, false);
//reduce upfading (increase acceleration)
motorLeft->setFade(fadeType_t::ACCEL, shake_msFadeAccel);
motorRight->setFade(fadeType_t::ACCEL, shake_msFadeAccel);
break;
}
//--- update mode to new mode ---
//TODO: add mutex
mode = modeNew;
}
//TODO simplify the following 3 functions? can be replaced by one?
//-----------------------------------
//----------- toggleIdle ------------
//-----------------------------------
//function to toggle between IDLE and previous active mode
void controlledArmchair::toggleIdle() {
//toggle between IDLE and previous mode
toggleMode(controlMode_t::IDLE);
}
//------------------------------------
//----------- toggleModes ------------
//------------------------------------
//function to toggle between two modes, but prefer first argument if entirely different mode is currently active
void controlledArmchair::toggleModes(controlMode_t modePrimary, controlMode_t modeSecondary) {
//switch to secondary mode when primary is already active
if (mode == modePrimary){
ESP_LOGW(TAG, "toggleModes: switching from primaryMode %s to secondarMode %s", controlModeStr[(int)mode], controlModeStr[(int)modeSecondary]);
//buzzer->beep(2,200,100);
changeMode(modeSecondary); //switch to secondary mode
}
//switch to primary mode when any other mode is active
else {
ESP_LOGW(TAG, "toggleModes: switching from %s to primary mode %s", controlModeStr[(int)mode], controlModeStr[(int)modePrimary]);
//buzzer->beep(4,200,100);
changeMode(modePrimary);
}
}
//-----------------------------------
//----------- toggleMode ------------
//-----------------------------------
//function that toggles between certain mode and previous mode
void controlledArmchair::toggleMode(controlMode_t modePrimary){
//switch to previous mode when primary is already active
if (mode == modePrimary){
ESP_LOGW(TAG, "toggleMode: switching from primaryMode %s to previousMode %s", controlModeStr[(int)mode], controlModeStr[(int)modePrevious]);
//buzzer->beep(2,200,100);
changeMode(modePrevious); //switch to previous mode
}
//switch to primary mode when any other mode is active
else {
ESP_LOGW(TAG, "toggleModes: switching from %s to primary mode %s", controlModeStr[(int)mode], controlModeStr[(int)modePrimary]);
//buzzer->beep(4,200,100);
changeMode(modePrimary);
}
}

View File

@ -0,0 +1,130 @@
#pragma once
#include "motordrivers.hpp"
#include "motorctl.hpp"
#include "buzzer.hpp"
#include "http.hpp"
#include "auto.hpp"
//--------------------------------------------
//---- struct, enum, variable declarations ---
//--------------------------------------------
//enum that decides how the motors get controlled
enum class controlMode_t {IDLE, JOYSTICK, MASSAGE, HTTP, MQTT, BLUETOOTH, AUTO, ADJUST_CHAIR};
//string array representing the mode enum (for printing the state as string)
extern const char* controlModeStr[8];
//--- control_config_t ---
//struct with config parameters
typedef struct control_config_t {
controlMode_t defaultMode; //default mode after startup and toggling IDLE
//timeout options
uint32_t timeoutMs; //time of inactivity after which the mode gets switched to IDLE
float timeoutTolerancePer; //percentage the duty can vary between timeout checks considered still inactive
} control_config_t;
//==================================
//========= control class ==========
//==================================
//controls the mode the armchair operates
//repeatedly generates the motor commands corresponding to current mode and sends those to motorcontrol
class controlledArmchair {
public:
//--- constructor ---
controlledArmchair (
control_config_t config_f,
buzzer_t* buzzer_f,
controlledMotor* motorLeft_f,
controlledMotor* motorRight_f,
evaluatedJoystick* joystick_f,
httpJoystick* httpJoystick_f
);
//--- functions ---
//task that repeatedly generates motor commands depending on the current mode
void startHandleLoop();
//function that changes to a specified control mode
void changeMode(controlMode_t modeNew);
//function that toggle between IDLE and previous active mode (or default if not switched to certain mode yet)
void toggleIdle();
//function that toggles between two modes, but prefers first argument if entirely different mode is currently active
void toggleModes(controlMode_t modePrimary, controlMode_t modeSecondary);
//toggle between certain mode and previous mode
void toggleMode(controlMode_t modePrimary);
//function that restarts timer which initiates the automatic timeout (switch to IDLE) after certain time of inactivity
void resetTimeout();
//function for sending a button event (e.g. from button task at event) to control task
//TODO: use queue instead?
void sendButtonEvent(uint8_t count);
private:
//--- functions ---
//function that evaluates whether there is no activity/change on the motor duty for a certain time, if so a switch to IDLE is issued. - has to be run repeatedly in a slow interval
void handleTimeout();
//--- objects ---
buzzer_t* buzzer;
controlledMotor* motorLeft;
controlledMotor* motorRight;
httpJoystick* httpJoystickMain_l;
evaluatedJoystick* joystick_l;
//---variables ---
//struct for motor commands returned by generate functions of each mode
motorCommands_t commands;
//struct with config parameters
control_config_t config;
//store joystick data
joystickData_t stickData;
bool altStickMapping; //alternative joystick mapping (reverse mapped differently)
//variables for http mode
uint32_t http_timestamp_lastData = 0;
//variables for MASSAGE mode
bool freezeInput = false;
//variables for AUTO mode
auto_instruction_t instruction = auto_instruction_t::NONE; //variable to receive instructions from automatedArmchair
//variable to store button event
uint8_t buttonCount = 0;
//definition of mode enum
controlMode_t mode = controlMode_t::IDLE;
//variable to store mode when toggling IDLE mode
controlMode_t modePrevious; //default mode
//command preset for idling motors
const motorCommand_t cmd_motorIdle = {
.state = motorstate_t::IDLE,
.duty = 0
};
const motorCommands_t cmds_bothMotorsIdle = {
.left = cmd_motorIdle,
.right = cmd_motorIdle
};
//variable for slow loop
uint32_t timestamp_SlowLoopLastRun = 0;
//variables for detecting timeout (switch to idle, after inactivity)
float dutyLeft_lastActivity = 0;
float dutyRight_lastActivity = 0;
uint32_t timestamp_lastActivity = 0;
};

View File

@ -0,0 +1,323 @@
#include "display.hpp"
extern "C"{
#include <driver/adc.h>
}
//#
//# SSD1306 Configuration
//#
#define GPIO_RANGE_MAX 33
#define I2C_INTERFACE y
//# SSD1306_128x32 is not set
#define SSD1306_128x64 y
#define OFFSETX 0
//# FLIP is not set
#define SCL_GPIO 22
#define SDA_GPIO 23
#define RESET_GPIO 15 //FIXME remove this
#define I2C_PORT_0 y
//# I2C_PORT_1 is not set
//# end of SSD1306 Configuration
#define ADC_BATT_VOLTAGE ADC1_CHANNEL_6
#define BAT_CELL_COUNT 7
//--------------------------
//------- getVoltage -------
//--------------------------
//TODO duplicate code: getVoltage also defined in currentsensor.cpp -> outsource this
//local function to get average voltage from adc
float getVoltage1(adc1_channel_t adc, uint32_t samples){
//measure voltage
int measure = 0;
for (int j=0; j<samples; j++){
measure += adc1_get_raw(adc);
ets_delay_us(50);
}
return (float)measure / samples / 4096 * 3.3;
}
//==========================
//======= variables ========
//==========================
SSD1306_t dev;
//int center, top, bottom;
char lineChar[20];
//top = 2;
//center = 3;
//bottom = 8;
//tag for logging
static const char * TAG = "display";
//=================
//===== init ======
//=================
void display_init(){
adc1_config_channel_atten(ADC1_CHANNEL_6, ADC_ATTEN_DB_11); //max voltage
ESP_LOGW("display", "INTERFACE is i2c");
ESP_LOGW("display", "SDA_GPIO=%d",SDA_GPIO);
ESP_LOGW("display", "SCL_GPIO=%d",SCL_GPIO);
ESP_LOGW("display", "RESET_GPIO=%d",RESET_GPIO);
i2c_master_init(&dev, SDA_GPIO, SCL_GPIO, RESET_GPIO);
#if FLIP
dev._flip = true;
ESP_LOGW("display", "Flip upside down");
#endif
ESP_LOGI("display", "Panel is 128x64");
ssd1306_init(&dev, 128, 64);
ssd1306_clear_screen(&dev, false);
ssd1306_contrast(&dev, 0xff);
}
float getBatteryVoltage(){
#define BAT_VOLTAGE_CONVERSION_FACTOR 11.9
float voltageRead = getVoltage1(ADC_BATT_VOLTAGE, 1000);
float battVoltage = voltageRead * 11.9; //note: factor comes from simple test with voltmeter
ESP_LOGD(TAG, "batteryVoltage - voltageAdc=%f, voltageConv=%f, factor=%.2f", voltageRead, battVoltage, BAT_VOLTAGE_CONVERSION_FACTOR);
return battVoltage;
}
//----------------------------------
//------- getBatteryPercent --------
//----------------------------------
//TODO find better/more accurate table?
//configure discharge curve of one cell with corresponding known voltage->chargePercent values
const float voltageLevels[] = {3.00, 3.45, 3.68, 3.74, 3.77, 3.79, 3.82, 3.87, 3.92, 3.98, 4.06, 4.20};
const float percentageLevels[] = {0.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0};
float getBatteryPercent(float voltage){
float cellVoltage = voltage/BAT_CELL_COUNT;
int size = sizeof(voltageLevels) / sizeof(voltageLevels[0]);
int sizePer = sizeof(percentageLevels) / sizeof(percentageLevels[0]);
//check if configured correctly
if (size != sizePer) {
ESP_LOGE(TAG, "getBatteryPercent - count of configured percentages do not match count of voltages");
return 0;
}
if (cellVoltage <= voltageLevels[0]) {
return 0.0;
} else if (cellVoltage >= voltageLevels[size - 1]) {
return 100.0;
}
//scale voltage linear to percent in matched range
for (int i = 1; i < size; ++i) {
if (cellVoltage <= voltageLevels[i]) {
float voltageRange = voltageLevels[i] - voltageLevels[i - 1];
float voltageOffset = cellVoltage - voltageLevels[i - 1];
float percentageRange = percentageLevels[i] - percentageLevels[i - 1];
float percentageOffset = percentageLevels[i - 1];
float percent = percentageOffset + (voltageOffset / voltageRange) * percentageRange;
ESP_LOGD(TAG, "getBatPercent - cellVoltage=%.3f => percentage=%.3f", cellVoltage, percent);
ESP_LOGD(TAG, "getBatPercent - matched range: %.2fV-%.2fV => %.1f%%-%.1f%%", voltageLevels[i-1], voltageLevels[i], percentageLevels[i-1], percentageLevels[i]);
return percent;
}
}
ESP_LOGE(TAG, "getBatteryPercent - unknown voltage range");
return 0.0; //unknown range
}
float getBatteryPercent(){
float voltage = getBatteryVoltage();
return getBatteryPercent(voltage);
}
//============================
//======= display task =======
//============================
#define VERY_SLOW_LOOP_INTERVAL 30000
#define SLOW_LOOP_INTERVAL 1000
#define FAST_LOOP_INTERVAL 200
//TODO: separate taks for each loop?
void display_task( void * pvParameters ){
char buf[20];
char buf1[20];
int len, len1;
int countFastloop = SLOW_LOOP_INTERVAL;
int countSlowLoop = VERY_SLOW_LOOP_INTERVAL;
display_init();
//TODO check if successfully initialized
//welcome msg
strcpy(buf, "Hello");
ssd1306_display_text_x3(&dev, 0, buf, 5, false);
vTaskDelay(1000 / portTICK_PERIOD_MS);
//update stats
while(1){
if (countFastloop >= SLOW_LOOP_INTERVAL / FAST_LOOP_INTERVAL){
//---- very slow loop ----
if (countSlowLoop >= VERY_SLOW_LOOP_INTERVAL/SLOW_LOOP_INTERVAL){
//clear display - workaround for bugged line order after a few minutes
countSlowLoop = 0;
ssd1306_clear_screen(&dev, false);
}
//---- slow loop ----
countSlowLoop ++;
countFastloop = 0;
//--- battery stats ---
//TODO update only when no load (currentsensors = ~0A)
float battVoltage = getBatteryVoltage();
float battPercent = getBatteryPercent(battVoltage);
len = snprintf(buf, sizeof(buf), "Bat:%.1fV %.2fV", battVoltage, battVoltage/BAT_CELL_COUNT);
len1 = snprintf(buf1, sizeof(buf1), "B:%02.0f%%", battPercent);
ssd1306_display_text_x3(&dev, 0, buf1, len1, false);
ssd1306_display_text(&dev, 3, buf, len, false);
ssd1306_display_text(&dev, 4, buf, len, true);
}
//---- fast loop ----
//update speed/rpm
float sLeft = speedLeft.getKmph();
float rLeft = speedLeft.getRpm();
float sRight = speedRight.getKmph();
float rRight = speedRight.getRpm();
len = snprintf(buf, sizeof(buf), "L:%.1f R:%.1fkm/h", fabs(sLeft), fabs(sRight));
ssd1306_display_text(&dev, 5, buf, len, false);
len = snprintf(buf, sizeof(buf), "L:%4.0f R:%4.0fRPM", rLeft, rRight);
ssd1306_display_text(&dev, 6, buf, len, false);
//debug speed sensors
ESP_LOGD(TAG, "%s", buf);
//TODO show currentsensor values
vTaskDelay(FAST_LOOP_INTERVAL / portTICK_PERIOD_MS);
countFastloop++;
}
//TODO add pages and menus
//-----------------------------------
//---- text-related example code ----
//-----------------------------------
//ssd1306_display_text(&dev, 0, "SSD1306 128x64", 14, false);
//ssd1306_display_text(&dev, 1, "ABCDEFGHIJKLMNOP", 16, false);
//ssd1306_display_text(&dev, 2, "abcdefghijklmnop",16, false);
//ssd1306_display_text(&dev, 3, "Hello World!!", 13, false);
////ssd1306_clear_line(&dev, 4, true);
////ssd1306_clear_line(&dev, 5, true);
////ssd1306_clear_line(&dev, 6, true);
////ssd1306_clear_line(&dev, 7, true);
//ssd1306_display_text(&dev, 4, "SSD1306 128x64", 14, true);
//ssd1306_display_text(&dev, 5, "ABCDEFGHIJKLMNOP", 16, true);
//ssd1306_display_text(&dev, 6, "abcdefghijklmnop",16, true);
//ssd1306_display_text(&dev, 7, "Hello World!!", 13, true);
//
//// Display Count Down
//uint8_t image[24];
//memset(image, 0, sizeof(image));
//ssd1306_display_image(&dev, top, (6*8-1), image, sizeof(image));
//ssd1306_display_image(&dev, top+1, (6*8-1), image, sizeof(image));
//ssd1306_display_image(&dev, top+2, (6*8-1), image, sizeof(image));
//for(int font=0x39;font>0x30;font--) {
// memset(image, 0, sizeof(image));
// ssd1306_display_image(&dev, top+1, (7*8-1), image, 8);
// memcpy(image, font8x8_basic_tr[font], 8);
// if (dev._flip) ssd1306_flip(image, 8);
// ssd1306_display_image(&dev, top+1, (7*8-1), image, 8);
// vTaskDelay(1000 / portTICK_PERIOD_MS);
//}
//
//// Scroll Up
//ssd1306_clear_screen(&dev, false);
//ssd1306_contrast(&dev, 0xff);
//ssd1306_display_text(&dev, 0, "---Scroll UP---", 16, true);
////ssd1306_software_scroll(&dev, 7, 1);
//ssd1306_software_scroll(&dev, (dev._pages - 1), 1);
//for (int line=0;line<bottom+10;line++) {
// lineChar[0] = 0x01;
// sprintf(&lineChar[1], " Line %02d", line);
// ssd1306_scroll_text(&dev, lineChar, strlen(lineChar), false);
// vTaskDelay(500 / portTICK_PERIOD_MS);
//}
//vTaskDelay(3000 / portTICK_PERIOD_MS);
//
//// Scroll Down
//ssd1306_clear_screen(&dev, false);
//ssd1306_contrast(&dev, 0xff);
//ssd1306_display_text(&dev, 0, "--Scroll DOWN--", 16, true);
////ssd1306_software_scroll(&dev, 1, 7);
//ssd1306_software_scroll(&dev, 1, (dev._pages - 1) );
//for (int line=0;line<bottom+10;line++) {
// lineChar[0] = 0x02;
// sprintf(&lineChar[1], " Line %02d", line);
// ssd1306_scroll_text(&dev, lineChar, strlen(lineChar), false);
// vTaskDelay(500 / portTICK_PERIOD_MS);
//}
//vTaskDelay(3000 / portTICK_PERIOD_MS);
//// Page Down
//ssd1306_clear_screen(&dev, false);
//ssd1306_contrast(&dev, 0xff);
//ssd1306_display_text(&dev, 0, "---Page DOWN---", 16, true);
//ssd1306_software_scroll(&dev, 1, (dev._pages-1) );
//for (int line=0;line<bottom+10;line++) {
// //if ( (line % 7) == 0) ssd1306_scroll_clear(&dev);
// if ( (line % (dev._pages-1)) == 0) ssd1306_scroll_clear(&dev);
// lineChar[0] = 0x02;
// sprintf(&lineChar[1], " Line %02d", line);
// ssd1306_scroll_text(&dev, lineChar, strlen(lineChar), false);
// vTaskDelay(500 / portTICK_PERIOD_MS);
//}
//vTaskDelay(3000 / portTICK_PERIOD_MS);
//// Horizontal Scroll
//ssd1306_clear_screen(&dev, false);
//ssd1306_contrast(&dev, 0xff);
//ssd1306_display_text(&dev, center, "Horizontal", 10, false);
//ssd1306_hardware_scroll(&dev, SCROLL_RIGHT);
//vTaskDelay(5000 / portTICK_PERIOD_MS);
//ssd1306_hardware_scroll(&dev, SCROLL_LEFT);
//vTaskDelay(5000 / portTICK_PERIOD_MS);
//ssd1306_hardware_scroll(&dev, SCROLL_STOP);
//
//// Vertical Scroll
//ssd1306_clear_screen(&dev, false);
//ssd1306_contrast(&dev, 0xff);
//ssd1306_display_text(&dev, center, "Vertical", 8, false);
//ssd1306_hardware_scroll(&dev, SCROLL_DOWN);
//vTaskDelay(5000 / portTICK_PERIOD_MS);
//ssd1306_hardware_scroll(&dev, SCROLL_UP);
//vTaskDelay(5000 / portTICK_PERIOD_MS);
//ssd1306_hardware_scroll(&dev, SCROLL_STOP);
//
//// Invert
//ssd1306_clear_screen(&dev, true);
//ssd1306_contrast(&dev, 0xff);
//ssd1306_display_text(&dev, center, " Good Bye!!", 12, true);
//vTaskDelay(5000 / portTICK_PERIOD_MS);
//// Fade Out
//ssd1306_fadeout(&dev);
#if 0
// Fade Out
for(int contrast=0xff;contrast>0;contrast=contrast-0x20) {
ssd1306_contrast(&dev, contrast);
vTaskDelay(40);
}
#endif
}

View File

@ -0,0 +1,18 @@
extern "C" {
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
#include "ssd1306.h"
#include "font8x8_basic.h"
}
#include "config.hpp"
//task that inititialized the display, displays welcome message
//and releatedly updates the display with certain content
void display_task( void * pvParameters );

82
board_single/main/fan.cpp Normal file
View File

@ -0,0 +1,82 @@
extern "C"
{
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
}
#include "fan.hpp"
//tag for logging
static const char * TAG = "fan-control";
//-----------------------------
//-------- constructor --------
//-----------------------------
controlledFan::controlledFan (fan_config_t config_f, controlledMotor* motor1_f, controlledMotor* motor2_f ){
//copy config
config = config_f;
//copy pointer to motor objects
motor1 = motor1_f;
motor2 = motor2_f;
//initialize gpio pin
gpio_pad_select_gpio(config.gpio_fan);
gpio_set_direction(config.gpio_fan, GPIO_MODE_OUTPUT);
}
//--------------------------
//--------- handle ---------
//--------------------------
void controlledFan::handle(){
//get current state of the motor (motorctl.cpp)
motor1Status = motor1->getStatus();
motor2Status = motor2->getStatus();
//--- handle duty threshold ---
//update timestamp if any threshold exceeded
if (motor1Status.duty > config.dutyThreshold
|| motor2Status.duty > config.dutyThreshold){ //TODO add temperature threshold
if (!needsCooling){
timestamp_needsCoolingSet = esp_log_timestamp();
needsCooling = true;
}
timestamp_lastThreshold = esp_log_timestamp();
} else {
needsCooling = false;
}
//--- turn off condition ---
if (fanRunning
&& !needsCooling //no more cooling required
&& (motor1Status.duty == 0) && (motor2Status.duty == 0) //both motors are off
//-> keeps fans running even when lower than threshold already, however turnOffDelay already started TODO: start turn off delay after motor stop only?
&& (esp_log_timestamp() - timestamp_lastThreshold) > config.turnOffDelayMs){ //turn off delay passed
fanRunning = false;
gpio_set_level(config.gpio_fan, 0);
timestamp_turnedOff = esp_log_timestamp();
ESP_LOGI(TAG, "turned fan OFF gpio=%d, minOnMs=%d, WasOnMs=%d", (int)config.gpio_fan, config.minOnMs, esp_log_timestamp()-timestamp_turnedOn);
}
//--- turn on condition ---
if (!fanRunning
&& needsCooling
&& ((esp_log_timestamp() - timestamp_turnedOff) > config.minOffMs) //fans off long enough
&& ((esp_log_timestamp() - timestamp_needsCoolingSet) > config.minOnMs)){ //motors on long enough
fanRunning = true;
gpio_set_level(config.gpio_fan, 1);
timestamp_turnedOn = esp_log_timestamp();
ESP_LOGI(TAG, "turned fan ON gpio=%d, minOffMs=%d, WasOffMs=%d", (int)config.gpio_fan, config.minOffMs, esp_log_timestamp()-timestamp_turnedOff);
}
//TODO Add statemachine for more specific control? Exponential average?
//TODO idea: try other aproach? increment a variable with certain weights e.g. integrate over duty, then turn fans on and decrement the variable again
ESP_LOGD(TAG, "fanState=%d, duty1=%f, duty2=%f, needsCooling=%d", fanRunning, motor1Status.duty, motor2Status.duty, needsCooling);
}

49
board_single/main/fan.hpp Normal file
View File

@ -0,0 +1,49 @@
#pragma once
extern "C"
{
#include "driver/gpio.h"
}
#include "motorctl.hpp"
//--- fan_config_t ---
//struct with all config parameters for a fan
typedef struct fan_config_t {
gpio_num_t gpio_fan;
float dutyThreshold;
uint32_t minOnMs;
uint32_t minOffMs;
uint32_t turnOffDelayMs;
} fan_config;
//==================================
//====== controlledFan class =======
//==================================
class controlledFan {
public:
//--- constructor ---
controlledFan (fan_config_t config_f, controlledMotor* motor1_f, controlledMotor* motor2_f );
//--- functions ---
void handle(); //has to be run repeatedly in a slow loop
private:
//--- variables ---
bool fanRunning = false;
bool needsCooling = false;
uint32_t timestamp_needsCoolingSet;
uint32_t timestamp_lastThreshold = 0;
uint32_t timestamp_turnedOn = 0;
uint32_t timestamp_turnedOff = 0;
fan_config_t config;
controlledMotor * motor1;
controlledMotor * motor2;
motorCommand_t motor1Status;
motorCommand_t motor2Status;
};

335
board_single/main/main.cpp Normal file
View File

@ -0,0 +1,335 @@
#include "hal/uart_types.h"
#include "motordrivers.hpp"
#include "types.hpp"
extern "C"
{
#include <stdio.h>
#include <esp_system.h>
#include <esp_event.h>
#include <nvs_flash.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "esp_log.h"
#include "sdkconfig.h"
#include "esp_spiffs.h"
#include "driver/ledc.h"
//custom C files
#include "wifi.h"
}
//custom C++ files
#include "config.hpp"
#include "control.hpp"
#include "button.hpp"
#include "http.hpp"
#include "uart_common.hpp"
#include "display.hpp"
//tag for logging
static const char * TAG = "main";
//====================================
//========== motorctl task ===========
//====================================
//task for handling the motors (ramp, current limit, driver)
void task_motorctl( void * pvParameters ){
ESP_LOGI(TAG, "starting handle loop...");
while(1){
motorRight.handle();
motorLeft.handle();
//10khz -> T=100us
vTaskDelay(10 / portTICK_PERIOD_MS);
}
}
//======================================
//============ buzzer task =============
//======================================
//TODO: move the task creation to buzzer class (buzzer.cpp)
//e.g. only have function buzzer.createTask() in app_main
void task_buzzer( void * pvParameters ){
ESP_LOGI("task_buzzer", "Start of buzzer task...");
//run function that waits for a beep events to arrive in the queue
//and processes them
buzzer.processQueue();
}
//=======================================
//============ control task =============
//=======================================
//task that controls the armchair modes and initiates commands generation and applies them to driver
void task_control( void * pvParameters ){
ESP_LOGI(TAG, "Initializing controlledArmchair and starting handle loop");
//start handle loop (control object declared in config.hpp)
control.startHandleLoop();
}
//======================================
//============ button task =============
//======================================
//task that handles the button interface/commands
void task_button( void * pvParameters ){
ESP_LOGI(TAG, "Initializing command-button and starting handle loop");
//create button instance
buttonCommands commandButton(&buttonJoystick, &joystick, &control, &buzzer, &motorLeft, &motorRight);
//start handle loop
commandButton.startHandleLoop();
}
//=======================================
//============== fan task ===============
//=======================================
//task that controlls fans for cooling the drivers
void task_fans( void * pvParameters ){
ESP_LOGI(TAG, "Initializing fans and starting fan handle loop");
//create fan instances with config defined in config.cpp
controlledFan fan(configCooling, &motorLeft, &motorRight);
//repeatedly run fan handle function in a slow loop
while(1){
fan.handle();
vTaskDelay(500 / portTICK_PERIOD_MS);
}
}
//=================================
//========== init spiffs ==========
//=================================
//initialize spi flash filesystem (used for webserver)
void init_spiffs(){
ESP_LOGI(TAG, "init spiffs");
esp_vfs_spiffs_conf_t esp_vfs_spiffs_conf = {
.base_path = "/spiffs",
.partition_label = NULL,
.max_files = 5,
.format_if_mount_failed = true};
esp_vfs_spiffs_register(&esp_vfs_spiffs_conf);
size_t total = 0;
size_t used = 0;
esp_spiffs_info(NULL, &total, &used);
ESP_LOGI(TAG, "SPIFFS: total %d, used %d", total, used);
esp_vfs_spiffs_unregister(NULL);
}
//==================================
//======== define loglevels ========
//==================================
void setLoglevels(void){
//set loglevel for all tags:
esp_log_level_set("*", ESP_LOG_WARN);
//--- set loglevel for individual tags ---
esp_log_level_set("main", ESP_LOG_INFO);
//esp_log_level_set("buzzer", ESP_LOG_INFO);
//esp_log_level_set("motordriver", ESP_LOG_DEBUG);
//esp_log_level_set("motor-control", ESP_LOG_INFO);
//esp_log_level_set("evaluatedJoystick", ESP_LOG_DEBUG);
//esp_log_level_set("joystickCommands", ESP_LOG_DEBUG);
esp_log_level_set("button", ESP_LOG_INFO);
esp_log_level_set("control", ESP_LOG_INFO);
//esp_log_level_set("fan-control", ESP_LOG_INFO);
esp_log_level_set("wifi", ESP_LOG_INFO);
esp_log_level_set("http", ESP_LOG_INFO);
//esp_log_level_set("automatedArmchair", ESP_LOG_DEBUG);
esp_log_level_set("display", ESP_LOG_INFO);
//esp_log_level_set("current-sensors", ESP_LOG_INFO);
//esp_log_level_set("speedSensor", ESP_LOG_INFO);
esp_log_level_set("chair-adjustment", ESP_LOG_INFO);
}
//=================================
//=========== app_main ============
//=================================
extern "C" void app_main(void) {
//enable 5V volate regulator
ESP_LOGW(TAG, "enabling 5V regulator...");
gpio_pad_select_gpio(GPIO_NUM_17);
gpio_set_direction(GPIO_NUM_17, GPIO_MODE_OUTPUT);
gpio_set_level(GPIO_NUM_17, 1);
//---- define log levels ----
setLoglevels();
//----------------------------------------------
//--- create task for controlling the motors ---
//----------------------------------------------
//task that receives commands, handles ramp and current limit and executes commands using the motordriver function
xTaskCreate(&task_motorctl, "task_motor-control", 2*4096, NULL, 6, NULL);
//------------------------------
//--- create task for buzzer ---
//------------------------------
xTaskCreate(&task_buzzer, "task_buzzer", 2048, NULL, 2, NULL);
//-------------------------------
//--- create task for control ---
//-------------------------------
//task that generates motor commands depending on the current mode and sends those to motorctl task
xTaskCreate(&task_control, "task_control", 4096, NULL, 5, NULL);
//------------------------------
//--- create task for button ---
//------------------------------
//task that evaluates and processes the button input and runs the configured commands
xTaskCreate(&task_button, "task_button", 4096, NULL, 4, NULL);
//-----------------------------------
//--- create task for fan control ---
//-----------------------------------
//task that evaluates and processes the button input and runs the configured commands
xTaskCreate(&task_fans, "task_fans", 2048, NULL, 1, NULL);
//-----------------------------------
//----- create task for display -----
//-----------------------------------
//task that handles the display
xTaskCreate(&display_task, "display_task", 3*2048, NULL, 1, NULL);
//beep at startup
buzzer.beep(3, 70, 50);
//--- initialize nvs-flash and netif (needed for wifi) ---
wifi_initNvs_initNetif();
//--- initialize spiffs ---
init_spiffs();
//--- initialize and start wifi ---
//FIXME: run wifi_init_client or wifi_init_ap as intended from control.cpp when switching state
//currently commented out because of error "assert failed: xQueueSemaphoreTake queue.c:1549 (pxQueue->uxItemSize == 0)" when calling control->changeMode from button.cpp
//when calling control.changeMode(http) from main.cpp it worked without error for some reason?
ESP_LOGI(TAG,"starting wifi...");
//wifi_init_client(); //connect to existing wifi
wifi_init_ap(); //start access point
ESP_LOGI(TAG,"done starting wifi");
//--- testing http server ---
// wifi_init_client(); //connect to existing wifi
// vTaskDelay(2000 / portTICK_PERIOD_MS);
// ESP_LOGI(TAG, "initializing http server");
// http_init_server();
//--- testing force http mode after startup ---
//control.changeMode(controlMode_t::HTTP);
//--- main loop ---
//does nothing except for testing things
while(1){
vTaskDelay(5000 / portTICK_PERIOD_MS);
//---------------------------------
//-------- TESTING section --------
//---------------------------------
//test sabertooth driver
// motors.setLeft({motorstate_t::FWD, 70});
// vTaskDelay(1000 / portTICK_PERIOD_MS);
// motors.setLeft({motorstate_t::IDLE, 0});
// vTaskDelay(1000 / portTICK_PERIOD_MS);
// motors.setLeft({motorstate_t::REV, 50});
// vTaskDelay(1000 / portTICK_PERIOD_MS);
// motors.setLeft(-90);
// vTaskDelay(1000 / portTICK_PERIOD_MS);
// motors.setLeft(90);
// vTaskDelay(1000 / portTICK_PERIOD_MS);
// motors.setLeft(0);
// vTaskDelay(1000 / portTICK_PERIOD_MS);
//--- test controlledMotor --- (ramp)
// //brake for 1 s
//motorLeft.setTarget(motorstate_t::BRAKE);
//vTaskDelay(1000 / portTICK_PERIOD_MS);
//command 90% - reverse
//motorLeft.setTarget(motorstate_t::REV, 90);
//vTaskDelay(5000 / portTICK_PERIOD_MS);
//motorLeft.setTarget(motorstate_t::FWD, 80);
//vTaskDelay(1000 / portTICK_PERIOD_MS);
//motorLeft.setTarget(motorstate_t::IDLE, 90);
//vTaskDelay(1000 / portTICK_PERIOD_MS);
// //--- test functions at mode change HTTP ---
// control.changeMode(controlMode_t::HTTP);
// vTaskDelay(10000 / portTICK_PERIOD_MS);
// control.changeMode(controlMode_t::IDLE);
// vTaskDelay(10000 / portTICK_PERIOD_MS);
//--- test wifi functions ---
// ESP_LOGI(TAG, "creating AP");
// wifi_init_ap(); //start accesspoint
// vTaskDelay(15000 / portTICK_PERIOD_MS);
// ESP_LOGI(TAG, "stopping wifi");
// wifi_deinit_ap(); //stop wifi access point
// vTaskDelay(5000 / portTICK_PERIOD_MS);
// ESP_LOGI(TAG, "connecting to wifi");
// wifi_init_client(); //connect to existing wifi
// vTaskDelay(10000 / portTICK_PERIOD_MS);
// ESP_LOGI(TAG, "stopping wifi");
// wifi_deinit_client(); //stop wifi client
// vTaskDelay(5000 / portTICK_PERIOD_MS);
//--- test button ---
//buttonJoystick.handle();
// if (buttonJoystick.risingEdge){
// ESP_LOGI(TAG, "button pressed, was released for %d ms", buttonJoystick.msReleased);
// buzzer.beep(2, 100, 50);
// }else if (buttonJoystick.fallingEdge){
// ESP_LOGI(TAG, "button released, was pressed for %d ms", buttonJoystick.msPressed);
// buzzer.beep(1, 200, 0);
// }
//--- test joystick commands ---
// motorCommands_t commands = joystick_generateCommandsDriving(joystick);
// motorRight.setTarget(commands.right.state, commands.right.duty); //TODO make motorctl.setTarget also accept motorcommand struct directly
// motorLeft.setTarget(commands.left.state, commands.left.duty); //TODO make motorctl.setTarget also accept motorcommand struct directly
// //motorRight.setTarget(commands.right.state, commands.right.duty);
//--- test joystick class ---
//joystickData_t data = joystick.getData();
//ESP_LOGI(TAG, "position=%s, x=%.1f%%, y=%.1f%%, radius=%.1f%%, angle=%.2f",
// joystickPosStr[(int)data.position], data.x*100, data.y*100, data.radius*100, data.angle);
//--- test the motor driver ---
//fade up duty - forward
// for (int duty=0; duty<=100; duty+=5) {
// motorLeft.setTarget(motorstate_t::FWD, duty);
// vTaskDelay(100 / portTICK_PERIOD_MS);
// }
}
}

View File

@ -0,0 +1,6 @@
# Name, Type, SubType, Offset, Size, Flags
# Note: if you have increased the bootloader size, make sure to update the offsets to avoid overlap
nvs, data, nvs, , 0x6000,
phy_init, data, phy, , 0x1000,
factory, app, factory, , 1M,
spiffs, data, spiffs, , 1M
1 # Name, Type, SubType, Offset, Size, Flags
2 # Note: if you have increased the bootloader size, make sure to update the offsets to avoid overlap
3 nvs, data, nvs, , 0x6000,
4 phy_init, data, phy, , 0x1000,
5 factory, app, factory, , 1M,
6 spiffs, data, spiffs, , 1M

1414
board_single/sdkconfig Normal file

File diff suppressed because it is too large Load Diff

View File

@ -4,8 +4,15 @@ idf_component_register(
"buzzer.cpp"
"uart_common.cpp"
"types.cpp"
"motordrivers.cpp"
"motorctl.cpp"
"currentsensor.cpp"
"joystick.cpp"
"http.cpp"
"speedsensor.cpp"
"chairAdjust.cpp"
INCLUDE_DIRS
"."
PRIV_REQUIRES nvs_flash
PRIV_REQUIRES nvs_flash mdns json spiffs esp_http_server
)

111
common/chairAdjust.cpp Normal file
View File

@ -0,0 +1,111 @@
extern "C"
{
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "esp_log.h"
#include <string.h>
}
#include "chairAdjust.hpp"
//--- gloabl variables ---
// strings for logging the rest state
const char* restStateStr[] = {"REST_OFF", "REST_DOWN", "REST_UP"};
//--- local variables ---
//tag for logging
static const char * TAG = "chair-adjustment";
//=============================
//======== constructor ========
//=============================
cControlledRest::cControlledRest(gpio_num_t gpio_up_f, gpio_num_t gpio_down_f, const char * name_f){
strcpy(name, name_f);
gpio_up = gpio_up_f;
gpio_down = gpio_down_f;
init();
}
//====================
//======= init =======
//====================
// init gpio pins for relays
void cControlledRest::init()
{
ESP_LOGW(TAG, "[%s] initializing gpio pins %d, %d for relays...", name, gpio_up, gpio_down);
// configure 2 gpio pins
gpio_pad_select_gpio(gpio_up);
gpio_set_direction(gpio_up, GPIO_MODE_OUTPUT);
gpio_pad_select_gpio(gpio_down);
gpio_set_direction(gpio_down, GPIO_MODE_OUTPUT);
// both relays off initially
gpio_set_level(gpio_down, 0);
gpio_set_level(gpio_up, 0);
}
//============================
//========= setState =========
//============================
void cControlledRest::setState(restState_t targetState)
{
//check if actually changed
if (targetState == state){
ESP_LOGD(TAG, "[%s] state already at '%s', nothing to do", name, restStateStr[state]);
return;
}
//apply new state
ESP_LOGI(TAG, "[%s] switching from state '%s' to '%s'", name, restStateStr[state], restStateStr[targetState]);
state = targetState;
timestamp_lastChange = esp_log_timestamp(); //TODO use this to estimate position
switch (state)
{
case REST_UP:
gpio_set_level(gpio_down, 0);
gpio_set_level(gpio_up, 1);
break;
case REST_DOWN:
gpio_set_level(gpio_down, 1);
gpio_set_level(gpio_up, 0);
break;
case REST_OFF:
gpio_set_level(gpio_down, 1);
gpio_set_level(gpio_up, 0);
break;
}
}
//====================================
//====== controlChairAdjustment ======
//====================================
//function that controls the two rests according to joystick data (applies threshold, defines direction)
//TODO:
// - add separate task that controls chair adjustment
// - timeout
// - track position
// - auto-adjust: move to position while driving
// - control via app
// - add delay betweem direction change
void controlChairAdjustment(joystickData_t data, cControlledRest * legRest, cControlledRest * backRest){
//--- variables ---
float stickThreshold = 0.3; //min coordinate for motor to start
//--- control rest motors ---
//leg rest (x-axis)
if (data.x > stickThreshold) legRest->setState(REST_UP);
else if (data.x < -stickThreshold) legRest->setState(REST_DOWN);
//back rest (y-axis)
if (data.y > stickThreshold) backRest->setState(REST_UP);
else if (data.y < -stickThreshold) backRest->setState(REST_DOWN);
}

41
common/chairAdjust.hpp Normal file
View File

@ -0,0 +1,41 @@
#pragma once
#include "joystick.hpp"
typedef enum {
REST_OFF = 0,
REST_DOWN,
REST_UP
} restState_t;
extern const char* restStateStr[];
//=====================================
//======= cControlledRest class =======
//=====================================
//class that controls 2 relays powering a motor that moves a rest of the armchair up or down
//2 instances will be created one for back and one for leg rest
class cControlledRest {
public:
cControlledRest(gpio_num_t gpio_up, gpio_num_t gpio_down, const char * name);
void setState(restState_t targetState);
void stop();
private:
void init();
char name[32];
gpio_num_t gpio_up;
gpio_num_t gpio_down;
restState_t state;
const uint32_t travelDuration = 5000;
uint32_t timestamp_lastChange;
float currentPosition = 0;
};
//====================================
//====== controlChairAdjustment ======
//====================================
//function that controls the two rests according to joystick data (applies threshold, defines direction)
void controlChairAdjustment(joystickData_t data, cControlledRest * legRest, cControlledRest * backRest);

View File

@ -13,7 +13,7 @@ extern "C"
}
#include "http.hpp"
#include "config.hpp"
//#include "config.hpp"
//tag for logging

View File

@ -68,3 +68,10 @@ class httpJoystick{
.angle = 0
};
};
//===== global object =====
//create global instance of httpJoystick
//note: is constructed/configured in config.cpp
extern httpJoystick httpJoystickMain;

View File

@ -310,7 +310,7 @@ motorCommands_t joystick_generateCommandsDriving(joystickData_t data, bool altSt
//--- variables ---
motorCommands_t commands;
float dutyMax = 90; //TODO add this to config, make changeable during runtime
float dutyMax = 100; //TODO add this to config, make changeable during runtime
float dutyOffset = 5; //immediately starts with this duty, TODO add this to config
float dutyRange = dutyMax - dutyOffset;

View File

@ -5,16 +5,18 @@
//tag for logging
static const char * TAG = "motor-control";
#define TIMEOUT_IDLE_WHEN_NO_COMMAND 8000
//=============================
//======== constructor ========
//=============================
//constructor, simultaniously initialize instance of motor driver 'motor' and current sensor 'cSensor' with provided config (see below lines after ':')
controlledMotor::controlledMotor(single100a_config_t config_driver, motorctl_config_t config_control):
motor(config_driver),
controlledMotor::controlledMotor(motorSetCommandFunc_t setCommandFunc, motorctl_config_t config_control):
cSensor(config_control.currentSensor_adc, config_control.currentSensor_ratedCurrent) {
//copy parameters for controlling the motor
config = config_control;
//pointer to update motot dury method
motorSetCommand = setCommandFunc;
//copy configured default fading durations to actually used variables
msFadeAccel = config.msFadeAccel;
msFadeDecel = config.msFadeDecel;
@ -92,7 +94,8 @@ void controlledMotor::handle(){
case motorstate_t::BRAKE:
//update state
state = motorstate_t::BRAKE;
dutyTarget = 0;
//dutyTarget = 0;
dutyTarget = fabs(commandReceive.duty);
break;
case motorstate_t::IDLE:
dutyTarget = 0;
@ -108,11 +111,12 @@ void controlledMotor::handle(){
//--- timeout, no data ---
//turn motors off if no data received for long time (e.g. no uart data / control offline)
if ((esp_log_timestamp() - timestamp_commandReceived) > 3000 && !receiveTimeout){
//TODO no timeout when braking?
if ((esp_log_timestamp() - timestamp_commandReceived) > TIMEOUT_IDLE_WHEN_NO_COMMAND && !receiveTimeout){
receiveTimeout = true;
state = motorstate_t::IDLE;
dutyTarget = 0;
ESP_LOGE(TAG, "TIMEOUT, no target data received for more than 3s -> switch to IDLE");
ESP_LOGE(TAG, "TIMEOUT, no target data received for more than %ds -> switch to IDLE", TIMEOUT_IDLE_WHEN_NO_COMMAND/1000);
}
//--- calculate increment ---
@ -132,13 +136,15 @@ void controlledMotor::handle(){
}
//--- BRAKE ---
//brake immediately, update state, duty and exit this cycle of handle function
if (state == motorstate_t::BRAKE){
motor.set(motorstate_t::BRAKE, 0);
dutyNow = 0;
return; //no need to run the fade algorithm
}
//--- BRAKE ---
//brake immediately, update state, duty and exit this cycle of handle function
if (state == motorstate_t::BRAKE){
ESP_LOGD(TAG, "braking - skip fading");
motorSetCommand({motorstate_t::BRAKE, dutyTarget});
ESP_LOGI(TAG, "Set Motordriver: state=%s, duty=%.2f - Measurements: current=%.2f, speed=N/A", motorstateStr[(int)state], dutyNow, currentNow);
//dutyNow = 0;
return; //no need to run the fade algorithm
}
//--- calculate difference ---
@ -169,8 +175,8 @@ void controlledMotor::handle(){
//----- CURRENT LIMIT -----
currentNow = cSensor.read();
if ((config.currentLimitEnabled) && (dutyDelta != 0)){
currentNow = cSensor.read();
if (fabs(currentNow) > config.currentMax){
float dutyOld = dutyNow;
//adaptive decrement:
@ -225,7 +231,8 @@ void controlledMotor::handle(){
//--- apply new target to motor ---
motor.set(state, fabs(dutyNow));
motorSetCommand({state, (float)fabs(dutyNow)});
ESP_LOGI(TAG, "Set Motordriver: state=%s, duty=%.2f - Measurements: current=%.2f, speed=N/A", motorstateStr[(int)state], dutyNow, currentNow);
//note: BRAKE state is handled earlier

View File

@ -19,7 +19,7 @@ extern "C"
//outsourced to common/types.hpp
#include "types.hpp"
typedef void (*motorSetCommandFunc_t)(motorCommand_t cmd);
//===================================
@ -28,7 +28,7 @@ extern "C"
class controlledMotor {
public:
//--- functions ---
controlledMotor(single100a_config_t config_driver, motorctl_config_t config_control); //constructor with structs for configuring motordriver and parameters for control TODO: add configuration for currentsensor
controlledMotor(motorSetCommandFunc_t setCommandFunc, motorctl_config_t config_control); //constructor with structs for configuring motordriver and parameters for control TODO: add configuration for currentsensor
void handle(); //controls motor duty with fade and current limiting feature (has to be run frequently by another task)
void setTarget(motorstate_t state_f, float duty_f = 0); //adds target command to queue for handle function
motorCommand_t getStatus(); //get current status of the motor (returns struct with state and duty)
@ -44,13 +44,14 @@ class controlledMotor {
void init(); //creates currentsensor objects, motordriver objects and queue
//--- objects ---
//motor driver
single100a motor;
//queue for sending commands to the separate task running the handle() function very fast
QueueHandle_t commandQueue = NULL;
//current sensor
currentSensor cSensor;
//function pointer that sets motor duty (driver)
motorSetCommandFunc_t motorSetCommand;
//--- variables ---
//struct for storing control specific parameters
motorctl_config_t config;

346
common/motordrivers.cpp Normal file
View File

@ -0,0 +1,346 @@
#include "motordrivers.hpp"
#include "esp_log.h"
#include "types.hpp"
//TODO: move from ledc to mcpwm?
//https://docs.espressif.com/projects/esp-idf/en/v4.3/esp32/api-reference/peripherals/mcpwm.html#
//https://github.com/espressif/esp-idf/tree/v4.3/examples/peripherals/mcpwm/mcpwm_basic_config
//Note fade functionality provided by LEDC would be very useful but unfortunately is not usable here because:
//"Due to hardware limitations, there is no way to stop a fade before it reaches its target duty."
//tag for logging
static const char * TAG = "motordriver";
//ms to wait in IDLE before BRAKE until relay actually switched
#define BRAKE_RELAY_DELAY_MS 300
//====================================
//===== single100a motor driver ======
//====================================
//-----------------------------
//-------- constructor --------
//-----------------------------
//copy provided struct with all configuration and run init function
single100a::single100a(single100a_config_t config_f){
config = config_f;
init();
}
//----------------------------
//---------- init ------------
//----------------------------
//function to initialize pwm output, gpio pins and calculate maxDuty
void single100a::init(){
//--- configure ledc timer ---
ledc_timer_config_t ledc_timer;
ledc_timer.speed_mode = LEDC_HIGH_SPEED_MODE;
ledc_timer.timer_num = config.ledc_timer;
ledc_timer.duty_resolution = config.resolution; //13bit gives max 5khz freq
ledc_timer.freq_hz = config.pwmFreq;
ledc_timer.clk_cfg = LEDC_AUTO_CLK;
//apply configuration
ledc_timer_config(&ledc_timer);
//--- configure ledc channel ---
ledc_channel_config_t ledc_channel;
ledc_channel.channel = config.ledc_channel;
ledc_channel.duty = 0;
ledc_channel.gpio_num = config.gpio_pwm;
ledc_channel.speed_mode = LEDC_HIGH_SPEED_MODE;
ledc_channel.hpoint = 0;
ledc_channel.timer_sel = config.ledc_timer;
ledc_channel.intr_type = LEDC_INTR_DISABLE;
ledc_channel.flags.output_invert = 0; //TODO: add config option to invert the pwm output?
//apply configuration
ledc_channel_config(&ledc_channel);
//--- define gpio pins as outputs ---
gpio_pad_select_gpio(config.gpio_a);
gpio_set_direction(config.gpio_a, GPIO_MODE_OUTPUT);
gpio_pad_select_gpio(config.gpio_b);
gpio_set_direction(config.gpio_b, GPIO_MODE_OUTPUT);
gpio_pad_select_gpio(config.gpio_brakeRelay);
gpio_set_direction(config.gpio_brakeRelay, GPIO_MODE_OUTPUT);
//--- calculate max duty according to selected resolution ---
dutyMax = pow(2, ledc_timer.duty_resolution) -1;
ESP_LOGW(TAG, "initialized single100a driver");
ESP_LOGW(TAG, "resolution=%dbit, dutyMax value=%d, resolution=%.4f %%", ledc_timer.duty_resolution, dutyMax, 100/(float)dutyMax);
}
//---------------------------
//----------- set -----------
//---------------------------
//function to put the h-bridge module in the desired state and duty cycle
void single100a::set(motorCommand_t cmd){
set(cmd.state, cmd.duty);
}
void single100a::set(motorstate_t state_f, float duty_f){
//scale provided target duty in percent to available resolution for ledc
uint32_t dutyScaled;
if (duty_f > 100) { //target duty above 100%
dutyScaled = dutyMax;
} else if (duty_f < 0) { //target at or below 0%
state_f = motorstate_t::IDLE;
dutyScaled = 0;
} else { //target duty 0-100%
//scale duty to available resolution
dutyScaled = duty_f / 100 * dutyMax;
}
ESP_LOGV(TAG, "target-state=%s, duty=%d/%d, duty_input=%.3f%%", motorstateStr[(int)state_f], dutyScaled, dutyMax, duty_f);
//TODO: only when previous mode was BRAKE?
if (state_f != motorstate_t::BRAKE){
//reset brake wait state
brakeWaitingForRelay = false;
//turn of brake relay
gpio_set_level(config.gpio_brakeRelay, 0);
}
//put the single100a h-bridge module in the desired state update duty-cycle
//TODO maybe outsource mode code from once switch case? e.g. idle() brake()...
switch (state_f){
case motorstate_t::IDLE:
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, dutyScaled);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
//TODO: to fix bugged state of h-bridge module when idle and start again, maybe try to leave pwm signal on for some time before updating a/b pins?
//no brake: (freewheel)
//gpio_set_level(config.gpio_a, config.aEnabledPinState);
//gpio_set_level(config.gpio_b, !config.bEnabledPinState);
gpio_set_level(config.gpio_a, config.aEnabledPinState);
gpio_set_level(config.gpio_b, config.bEnabledPinState);
break;
case motorstate_t::BRAKE:
//prevent full short (no brake resistors) due to slow relay, also reduces switching load
if (!brakeWaitingForRelay){
ESP_LOGW(TAG, "BRAKE: turned on relay, waiting in IDLE for %d ms, then apply brake", BRAKE_RELAY_DELAY_MS);
//switch driver to IDLE for now
gpio_set_level(config.gpio_a, config.aEnabledPinState);
gpio_set_level(config.gpio_b, config.bEnabledPinState);
//start brake relay
gpio_set_level(config.gpio_brakeRelay, 1);
timestamp_brakeRelayPowered = esp_log_timestamp();
brakeWaitingForRelay = true;
}
//check if delay for relay to switch has passed
else if ((esp_log_timestamp() - timestamp_brakeRelayPowered) > BRAKE_RELAY_DELAY_MS) {
ESP_LOGD(TAG, "applying brake with brake-resistors at duty=%.2f%%", duty_f);
//switch driver to BRAKE
gpio_set_level(config.gpio_a, !config.aEnabledPinState);
gpio_set_level(config.gpio_b, !config.bEnabledPinState);
//apply duty
//FIXME switch between BREAK and IDLE with PWM and ignore pwm-pin? (needs test)
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, dutyScaled);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
} else {
//waiting... stay in IDLE
ESP_LOGD(TAG, "waiting for brake relay to close (IDLE)...");
gpio_set_level(config.gpio_a, config.aEnabledPinState);
gpio_set_level(config.gpio_b, config.bEnabledPinState);
}
break;
case motorstate_t::FWD:
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, dutyScaled);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
//forward:
gpio_set_level(config.gpio_a, config.aEnabledPinState);
gpio_set_level(config.gpio_b, !config.bEnabledPinState);
break;
case motorstate_t::REV:
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, dutyScaled);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
//reverse:
gpio_set_level(config.gpio_a, !config.aEnabledPinState);
gpio_set_level(config.gpio_b, config.bEnabledPinState);
break;
}
}
//==========================================
//===== sabertooth 2x60A motor driver ======
//==========================================
/*
fom driver documentation:
>Sabertooth controls two motors with one 8 byte character, when operating in Simplified Serial mode
>Sending a character between 1 and 127 will control motor 1.
>1 is full reverse, 64 is stop and 127 is full forward.
>Sending a character between 128 and 255 will control motor 2.
>128 is full reverse, 192 is stop and 255 is full forward.
>Character 0 (hex 0x00) is a special case. Sending this character will shut down both motors.
*/
//-----------------------------
//-------- constructor --------
//-----------------------------
sabertooth2x60a::sabertooth2x60a(sabertooth2x60_config_t config_f){
config = config_f;
init();
}
//----------------------------
//----------- init -----------
//----------------------------
void sabertooth2x60a::init(){
ESP_LOGW(TAG, "initializing uart...");
uart_config_t uart_config = {
.baud_rate = 9600, //dip switches: 101011
.data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE,
.stop_bits = UART_STOP_BITS_1,
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
};
ESP_LOGI(TAG, "configure...");
ESP_ERROR_CHECK(uart_param_config(config.uart_num, &uart_config));
ESP_LOGI(TAG, "setpins...");
ESP_ERROR_CHECK(uart_set_pin(config.uart_num, config.gpio_TX, GPIO_NUM_NC, 0, 0));
ESP_LOGI(TAG, "init...");
ESP_ERROR_CHECK(uart_driver_install(config.uart_num, 1024, 1024, 10, NULL, 0)); //todo ring buffer less / 0
//
uart_mutex = xSemaphoreCreateMutex();
uart_isInitialized = true;
}
//---------- motorCommand to signedDuty ----------
float motorCommandToSignedDuty(motorCommand_t cmd){
//if (cmd.duty > 100) cmd.duty = 100;
//else if (cmd.duty < 0) cmd.duty = 0;
float duty = 0;
switch (cmd.state){
case motorstate_t::FWD:
duty = cmd.duty;
break;
case motorstate_t::REV:
duty = - cmd.duty;
break;
case motorstate_t::IDLE:
case motorstate_t::BRAKE:
duty = 0;
break;
}
return duty;
}
//-------- send byte --------
//send byte via uart to sabertooth driver
#define UART_MUTEX_TIMEOUT_MS 5000
void sabertooth2x60a::sendByte(char data){
//TODO mutex?
if (!uart_isInitialized){
ESP_LOGE(TAG, "uart not initialized, not sending command %d...", data);
return;
}
if (xSemaphoreTake(uart_mutex, pdMS_TO_TICKS(UART_MUTEX_TIMEOUT_MS)) == pdTRUE) {
uart_write_bytes(config.uart_num, &data, 1);
ESP_LOGD(TAG, "sent data=%d to sabertooth driver via uart", data);
//note 1byte takes 833us at 9600 baud
ets_delay_us(400); //wait for min time between each message
xSemaphoreGive(uart_mutex);
} else ESP_LOGE(TAG, "timeout waiting for uart mutex");
}
//---------------------------
//--------- setLeft ---------
//---------------------------
//between 1 and 127 will control motor 1. 1 is full reverse, 64 is stop and 127 is full forward.
//Character 0 (hex 0x00) shut down both motors.
void sabertooth2x60a::setLeft(float dutyPerSigned){
uint8_t data = 64;
if (dutyPerSigned <= -100.0) {
data = 1; //1 -> motor1 full reverse
} else if (dutyPerSigned >= 100) {
data = 127; //127 -> motor1 full forward
} else if (dutyPerSigned == 0.0) {
data = 64; //64 -> motor1 off
} else if (dutyPerSigned < 0.0) {
//REV: scale negative values between -100 and 0 to 1-63
data = static_cast<int>(64 - (- dutyPerSigned / 100.0) * 63);
} else if (dutyPerSigned <= 100.0) {
//FWD: scale positive values between 0 and 100 to 65-127
data = static_cast<int>(64 + (dutyPerSigned / 100.0) * 63);
}
//check if both motors are off -> special off command
dutyLeft = dutyPerSigned;
if (dutyLeft == 0 && dutyRight == 0) data = 0;
ESP_LOGI(TAG, "set left motor to duty=%.2f, (data=%d)", dutyPerSigned, data);
sendByte(data);
}
//----------------------------
//--------- setRight ---------
//----------------------------
//between 128 and 255 will control motor 2. 128 is full reverse, 192 is stop and 255 is full forward.
//Character 0 (hex 0x00) shut down both motors.
void sabertooth2x60a::setRight(float dutyPerSigned) {
uint8_t data = 192;
if (dutyPerSigned <= -100.0) {
data = 128; //128 -> motor2 full reverse
} else if (dutyPerSigned >= 100.0) {
data = 255; //255 -> motor2 full forward
} else if (dutyPerSigned == 0.0) {
data = 192; //192 -> motor2 off
//NOTE: having issue with driver - after previously being on motor2 still spins slowly at command 192
} else if (dutyPerSigned < 0.0) {
//REV: scale negative values between -100 and 0 to 128-191
data = static_cast<uint8_t>(192 - (-dutyPerSigned / 100.0) * 64);
} else if (dutyPerSigned <= 100.0) {
//FWD: scale positive values between 0 and 100 to 193-255
data = static_cast<uint8_t>(192 + (dutyPerSigned / 100.0) * 63);
}
//check if both motors are off -> special off command
dutyRight = dutyPerSigned;
if (dutyRight == 0 && dutyLeft == 0) data = 0;
ESP_LOGI(TAG, "set right motor to duty=%.2f, (data=%d)", dutyPerSigned, data);
sendByte(data);
}
//-------------------------
//--- setLeft, setRight ---
//-------------------------
//using motorCommand_t struct
void sabertooth2x60a::setLeft(motorCommand_t motorCommand_f){
float dutyTarget = motorCommandToSignedDuty(motorCommand_f);
setLeft(dutyTarget);
}
void sabertooth2x60a::setRight(motorCommand_t motorCommand_f){
float dutyTarget = motorCommandToSignedDuty(motorCommand_f);
setRight(dutyTarget);
}

152
common/motordrivers.hpp Normal file
View File

@ -0,0 +1,152 @@
#pragma once
extern "C"
{
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "esp_log.h"
#include "driver/ledc.h"
#include "esp_err.h"
#include "driver/uart.h"
#include "freertos/semphr.h"
}
#include <cmath>
#include "types.hpp"
//-------------------------------
//----- CommandToSignedDuty -----
//-------------------------------
//convert motor command (FWD/REV/INDLE, duty) to value from -100 to 100
float motorCommandToSignedDuty(motorCommand_t cmd);
//====================================
//===== single100a motor driver ======
//====================================
//--------------------------------------------
//---- struct, enum, variable declarations ---
//--------------------------------------------
//motorstate_t, motorstateStr outsourced to common/types.hpp
#include "types.hpp"
//struct with all config parameters for single100a motor driver
typedef struct single100a_config_t {
gpio_num_t gpio_pwm;
gpio_num_t gpio_a;
gpio_num_t gpio_b;
gpio_num_t gpio_brakeRelay;
ledc_timer_t ledc_timer;
ledc_channel_t ledc_channel;
bool aEnabledPinState;
bool bEnabledPinState;
ledc_timer_bit_t resolution;
int pwmFreq;
} single100a_config_t;
//--------------------------------
//------- single100a class -------
//--------------------------------
class single100a {
public:
//--- constructor ---
single100a(single100a_config_t config_f); //provide config struct (see above)
//--- functions ---
void set(motorstate_t state, float duty_f = 0); //set mode and duty of the motor (see motorstate_t above)
void set(motorCommand_t cmd);
//TODO: add functions to get the current state and duty
private:
//--- functions ---
void init(); //initialize pwm and gpio outputs, calculate maxDuty
//--- variables ---
single100a_config_t config;
uint32_t dutyMax;
motorstate_t state = motorstate_t::IDLE;
bool brakeWaitingForRelay = false;
uint32_t timestamp_brakeRelayPowered;
};
//==========================================
//===== sabertooth 2x60A motor driver ======
//==========================================
//struct with all config parameters for sabertooth2x60a driver
typedef struct {
gpio_num_t gpio_TX;
uart_port_t uart_num; //(UART_NUM_1/2)
} sabertooth2x60_config_t;
//controll via simplified serial
//=> set dip switches to 'simplified serial 9600 Baud' according to manual 101011
class sabertooth2x60a {
public:
//--- constructor ---
sabertooth2x60a(sabertooth2x60_config_t config_f); //provide config struct (see above)
//--- functions ---
//set motor speed with float value from -100 to 100
void setLeft(float dutyPerSigned);
void setRight(float dutyPerSigned);
//set mode and duty of the motor (see motorstate_t above)
void setLeft(motorCommand_t command);
void setRight(motorCommand_t command);
//TODO: add functions to get the current state and duty
private:
//--- functions ---
void sendByte(char data);
void init(); //initialize uart
//--- variables ---
sabertooth2x60_config_t config;
uint32_t dutyMax;
motorstate_t state = motorstate_t::IDLE;
bool uart_isInitialized = false;
SemaphoreHandle_t uart_mutex;
float dutyLeft = 0;
float dutyRight = 0;
};
// //wrap motor drivers in a common class
// //-> different drivers can be used easily without changing code in motorctl etc
// //TODO add UART as driver?
// enum driverType_t {SINGLE100A, SABERTOOTH};
//
// template <typename driverType> class motors_t {
// public:
// motors_t (single100a_config_t config_left, single100a_config_t config_right);
// motors_t (sabertooth2x60_config_t);
//
// setLeft(motorstate_t state);
// setRight(motorstate_t state);
// set(motorCommands_t);
// private:
// enum driverType_t driverType;
// sabertooth2x60_config_t config_saber;
// single100a_config_t config_single;
// }
//
//

171
common/speedsensor.cpp Normal file
View File

@ -0,0 +1,171 @@
#include "speedsensor.hpp"
#include "esp_timer.h"
#include <ctime>
//===== config =====
#define TIMEOUT_NO_ROTATION 1000 //RPM set to 0 when no pulses within that time (ms)
static const char* TAG = "speedSensor";
uint32_t min(uint32_t a, uint32_t b){
if (a>b) return b;
else return a;
}
//=========================================
//========== ISR onEncoderChange ==========
//=========================================
//handle gpio edge event
//determines direction and rotational speed with a speedSensor object
void IRAM_ATTR onEncoderChange(void* arg) {
speedSensor* sensor = (speedSensor*)arg;
int currentState = gpio_get_level(sensor->config.gpioPin);
//detect rising edge LOW->HIGH (reached end of gap in encoder disk)
if (currentState == 1 && sensor->prevState == 0) {
//time since last edge in us
uint32_t currentTime = esp_timer_get_time();
uint32_t timeElapsed = currentTime - sensor->lastEdgeTime;
sensor->lastEdgeTime = currentTime; //update last edge time
//store duration of last pulse
sensor->pulseDurations[sensor->pulseCounter] = timeElapsed;
sensor->pulseCounter++;
//check if 3rd pulse has occoured
if (sensor->pulseCounter >= 3) {
sensor->pulseCounter = 0; //reset counter
//simplify variable names
uint32_t pulse1 = sensor->pulseDurations[0];
uint32_t pulse2 = sensor->pulseDurations[1];
uint32_t pulse3 = sensor->pulseDurations[2];
//find shortest pulse
uint32_t shortestPulse = min(pulse1, min(pulse2, pulse3));
//Determine direction based on pulse order
int directionNew = 0;
if (shortestPulse == pulse1) { //short-medium-long...
directionNew = 1; //fwd
} else if (shortestPulse == pulse3) { //long-medium-short...
directionNew = -1; //rev
} else if (shortestPulse == pulse2) {
if (pulse1 < pulse3){ //medium short long-medium-short long...
directionNew = -1; //rev
} else { //long short-medium-long short-medium-long...
directionNew = 1; //fwd
}
}
//save and invert direction if necessay
//TODO mutex?
if (sensor->config.directionInverted) sensor->direction = -directionNew;
else sensor->direction = directionNew;
//calculate rotational speed
uint64_t pulseSum = pulse1 + pulse2 + pulse3;
sensor->currentRpm = directionNew * (sensor->config.degreePerGroup / 360.0 * 60.0 / ((double)pulseSum / 1000000.0));
}
}
//store current pin state for next edge detection
sensor->prevState = currentState;
}
//============================
//======= constructor ========
//============================
speedSensor::speedSensor(speedSensor_config_t config_f){
//copy config
config = config_f;
//note: currently gets initialized at first method call
//this prevents crash due to too early initialization at boot
//TODO: create global objects later after boot
//init gpio and ISR
//init();
}
//==========================
//========== init ==========
//==========================
//initializes gpio pin and configures interrupt
void speedSensor::init() {
//configure pin
gpio_pad_select_gpio(config.gpioPin);
gpio_set_direction(config.gpioPin, GPIO_MODE_INPUT);
gpio_set_pull_mode(config.gpioPin, GPIO_PULLUP_ONLY);
ESP_LOGW(TAG, "%s, configured gpio-pin %d", config.logName, (int)config.gpioPin);
//configure interrupt
gpio_set_intr_type(config.gpioPin, GPIO_INTR_ANYEDGE);
gpio_install_isr_service(0);
gpio_isr_handler_add(config.gpioPin, onEncoderChange, this);
ESP_LOGW(TAG, "%s, configured interrupt", config.logName);
isInitialized = true;
}
//==========================
//========= getRpm =========
//==========================
//get rotational speed in revolutions per minute
float speedSensor::getRpm(){
//check if initialized
if (!isInitialized) init();
uint32_t timeElapsed = esp_timer_get_time() - lastEdgeTime;
//timeout (standstill)
//TODO variable timeout considering config.degreePerGroup
if ((currentRpm != 0) && (esp_timer_get_time() - lastEdgeTime) > TIMEOUT_NO_ROTATION*1000){
ESP_LOGW(TAG, "%s - timeout: no pulse within %dms... last pulse was %dms ago => set RPM to 0",
config.logName, TIMEOUT_NO_ROTATION, timeElapsed/1000);
currentRpm = 0;
}
//debug output (also log variables when this function is called)
ESP_LOGI(TAG, "%s - getRpm: returning stored rpm=%.3f", config.logName, currentRpm);
ESP_LOGV(TAG, "%s - rpm=%f, dir=%d, pulseCount=%d, p1=%d, p2=%d, p3=%d lastEdgetime=%d",
config.logName,
currentRpm,
direction,
pulseCounter,
(int)pulseDurations[0]/1000,
(int)pulseDurations[1]/1000,
(int)pulseDurations[2]/1000,
(int)lastEdgeTime);
//return currently stored rpm
return currentRpm;
}
//==========================
//========= getKmph =========
//==========================
//get speed in kilometers per hour
float speedSensor::getKmph(){
float currentSpeed = getRpm() * config.tireCircumferenceMeter * 60/1000;
ESP_LOGI(TAG, "%s - getKmph: returning speed=%.3fkm/h", config.logName, currentSpeed);
return currentSpeed;
}
//==========================
//========= getMps =========
//==========================
//get speed in meters per second
float speedSensor::getMps(){
float currentSpeed = getRpm() * config.tireCircumferenceMeter;
ESP_LOGI(TAG, "%s - getMps: returning speed=%.3fm/s", config.logName, currentSpeed);
return currentSpeed;
}

54
common/speedsensor.hpp Normal file
View File

@ -0,0 +1,54 @@
#pragma once
extern "C" {
#include "esp_log.h"
#include "hal/gpio_types.h"
#include "driver/gpio.h"
#include "esp_timer.h"
}
//Encoder disk requirements:
//encoder disk has to have gaps in 3 differnt intervals (short, medium, long)
//that pattern can be repeated multiple times, see config option
typedef struct {
gpio_num_t gpioPin;
float degreePerGroup; //360 / [count of short,medium,long groups on encoder disk]
float tireCircumferenceMeter;
//positive direction is pulse order "short, medium, long"
bool directionInverted;
char* logName;
} speedSensor_config_t;
class speedSensor {
//TODO add count of revolutions/pulses if needed? (get(), reset() etc)
public:
//constructor
speedSensor(speedSensor_config_t config);
//initializes gpio pin and configures interrupt
void init();
//negative values = reverse direction
//positive values = forward direction
float getKmph(); //kilometers per hour
float getMps(); //meters per second
float getRpm(); //rotations per minute
//1=forward, -1=reverse
int direction;
//variables for handling the encoder
speedSensor_config_t config;
int prevState = 0;
uint64_t pulseDurations[3] = {};
uint64_t lastEdgeTime = 0;
uint8_t pulseCounter = 0;
int debugCount = 0;
double currentRpm = 0;
bool isInitialized = false;
private:
};

View File

@ -0,0 +1,5 @@
set(component_srcs "ssd1306.c" "ssd1306_i2c.c" "ssd1306_spi.c")
idf_component_register(SRCS "${component_srcs}"
PRIV_REQUIRES driver
INCLUDE_DIRS ".")

View File

@ -0,0 +1,183 @@
menu "SSD1306 Configuration"
config GPIO_RANGE_MAX
int
default 33 if IDF_TARGET_ESP32
default 46 if IDF_TARGET_ESP32S2
default 48 if IDF_TARGET_ESP32S3
default 18 if IDF_TARGET_ESP32C2
default 19 if IDF_TARGET_ESP32C3
default 30 if IDF_TARGET_ESP32C6
choice INTERFACE
prompt "Interface"
default I2C_INTERFACE
help
Select Interface.
config I2C_INTERFACE
bool "I2C Interface"
help
I2C Interface.
config SPI_INTERFACE
bool "SPI Interface"
help
SPI Interface.
endchoice
choice PANEL
prompt "Panel Type"
default SSD1306_128x64
help
Select Panel Type.
config SSD1306_128x32
bool "128x32 Panel"
help
Panel is 128x32.
config SSD1306_128x64
bool "128x64 Panel"
help
Panel is 128x64.
endchoice
config OFFSETX
int "GRAM X OFFSET"
range 0 99
default 0
help
When your TFT have offset(X), set it.
config FLIP
bool "Flip upside down"
default false
help
Flip upside down.
config SCL_GPIO
depends on I2C_INTERFACE
int "SCL GPIO number"
range 0 GPIO_RANGE_MAX
default 22 if IDF_TARGET_ESP32
default 12 if IDF_TARGET_ESP32S2
default 12 if IDF_TARGET_ESP32S3
default 6 # C3 and others
help
GPIO number (IOxx) to I2C SCL.
Some GPIOs are used for other purposes (flash connections, etc.) and cannot be used to I2C.
GPIOs 35-39 are input-only so cannot be used as outputs.
config SDA_GPIO
depends on I2C_INTERFACE
int "SDA GPIO number"
range 0 GPIO_RANGE_MAX
default 21 if IDF_TARGET_ESP32
default 11 if IDF_TARGET_ESP32S2
default 11 if IDF_TARGET_ESP32S3
default 5 # C3 and others
help
GPIO number (IOxx) to I2C SDA.
Some GPIOs are used for other purposes (flash connections, etc.) and cannot be used to I2C.
GPIOs 35-39 are input-only so cannot be used as outputs.
config MOSI_GPIO
depends on SPI_INTERFACE
int "MOSI GPIO number"
range 0 GPIO_RANGE_MAX
default 23 if IDF_TARGET_ESP32
default 35 if IDF_TARGET_ESP32S2
default 35 if IDF_TARGET_ESP32S3
default 1 # C3 and others
help
GPIO number (IOxx) to SPI MOSI.
Some GPIOs are used for other purposes (flash connections, etc.) and cannot be used to MOSI.
On the ESP32, GPIOs 35-39 are input-only so cannot be used as outputs.
On the ESP32-S2, GPIO 46 is input-only so cannot be used as outputs.
config SCLK_GPIO
depends on SPI_INTERFACE
int "SCLK GPIO number"
range 0 GPIO_RANGE_MAX
default 18 if IDF_TARGET_ESP32
default 36 if IDF_TARGET_ESP32S2
default 36 if IDF_TARGET_ESP32S3
default 2 # C3 and others
help
GPIO number (IOxx) to SPI SCLK.
Some GPIOs are used for other purposes (flash connections, etc.) and cannot be used to SCLK.
On the ESP32, GPIOs 35-39 are input-only so cannot be used as outputs.
On the ESP32-S2, GPIO 46 is input-only so cannot be used as outputs.
config CS_GPIO
depends on SPI_INTERFACE
int "CS GPIO number"
range 0 GPIO_RANGE_MAX
default 5 if IDF_TARGET_ESP32
default 34 if IDF_TARGET_ESP32S2
default 34 if IDF_TARGET_ESP32S3
default 10 # C3 and others
help
GPIO number (IOxx) to SPI CS.
Some GPIOs are used for other purposes (flash connections, etc.) and cannot be used to CS.
GPIOs 35-39 are input-only so cannot be used as outputs.
config DC_GPIO
depends on SPI_INTERFACE
int "DC GPIO number"
range 0 GPIO_RANGE_MAX
default 4 if IDF_TARGET_ESP32
default 37 if IDF_TARGET_ESP32S2
default 37 if IDF_TARGET_ESP32S3
default 3 # C3 and others
help
GPIO number (IOxx) to SPI DC.
Some GPIOs are used for other purposes (flash connections, etc.) and cannot be used to DC.
GPIOs 35-39 are input-only so cannot be used as outputs.
config RESET_GPIO
int "RESET GPIO number"
range -1 GPIO_RANGE_MAX
default 15 if IDF_TARGET_ESP32
default 38 if IDF_TARGET_ESP32S2
default 38 if IDF_TARGET_ESP32S3
default 4 # C3 and others
help
GPIO number (IOxx) to RESET.
When it is -1, RESET isn't performed.
Some GPIOs are used for other purposes (flash connections, etc.) and cannot be used to RESET.
GPIOs 35-39 are input-only so cannot be used as outputs.
choice I2C_PORT
depends on I2C_INTERFACE
prompt "I2C port that controls this bus"
default I2C_PORT_0
help
Select I2C port that controls this bus.
config I2C_PORT_0
bool "I2C_PORT_0"
help
Use I2C_PORT_0.
config I2C_PORT_1
depends on IDF_TARGET_ESP32 || IDF_TARGET_ESP32S2 || IDF_TARGET_ESP32S3
bool "I2C_PORT_1"
help
Use I2C_PORT_1.
endchoice
choice SPI_HOST
depends on SPI_INTERFACE
prompt "SPI peripheral that controls this bus"
default SPI2_HOST
help
Select SPI peripheral that controls this bus.
config SPI2_HOST
bool "SPI2_HOST"
help
Use SPI2_HOST. This is also called HSPI_HOST.
config SPI3_HOST
depends on IDF_TARGET_ESP32 || IDF_TARGET_ESP32S2 || IDF_TARGET_ESP32S3
bool "SPI3_HOST"
help
USE SPI3_HOST. This is also called VSPI_HOST
endchoice
endmenu

View File

@ -0,0 +1,174 @@
/*
* font8x8_basic.h
*
* Created on: 2017/05/03
* Author: yanbe
*/
#ifndef MAIN_FONT8X8_BASIC_H_
#define MAIN_FONT8X8_BASIC_H_
/*
Constant: font8x8_basic_tr
Contains an 90 digree transposed 8x8 font map for unicode points
U+0000 - U+007F (basic latin)
To make it easy to use with SSD1306's GDDRAM mapping and API,
this constant is an 90 degree transposed.
The original version written by Marcel Sondaar is availble at:
https://github.com/dhepper/font8x8/blob/master/font8x8_basic.h
Conversion is done via following procedure:
for (int code = 0; code < 128; code++) {
uint8_t trans[8];
for (int w = 0; w < 8; w++) {
trans[w] = 0x00;
for (int b = 0; b < 8; b++) {
trans[w] |= ((font8x8_basic[code][b] & (1 << w)) >> w) << b;
}
}
for (int w = 0; w < 8; w++) {
if (w == 0) { printf(" { "); }
printf("0x%.2X", trans[w]);
if (w < 7) { printf(", "); }
if (w == 7) { printf(" }, // U+00%.2X (%c)\n", code, code); }
}
}
*/
static uint8_t font8x8_basic_tr[128][8] = {
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0000 (nul)
{ 0x00, 0x04, 0x02, 0xFF, 0x02, 0x04, 0x00, 0x00 }, // U+0001 (Up Allow)
{ 0x00, 0x20, 0x40, 0xFF, 0x40, 0x20, 0x00, 0x00 }, // U+0002 (Down Allow)
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0003
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0004
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0005
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0006
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0007
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0008
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0009
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+000A
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+000B
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+000C
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+000D
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+000E
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+000F
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0010
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0011
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0012
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0013
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0014
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0015
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0016
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0017
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0018
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0019
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+001A
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+001B
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+001C
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+001D
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+001E
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+001F
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0020 (space)
{ 0x00, 0x00, 0x06, 0x5F, 0x5F, 0x06, 0x00, 0x00 }, // U+0021 (!)
{ 0x00, 0x03, 0x03, 0x00, 0x03, 0x03, 0x00, 0x00 }, // U+0022 (")
{ 0x14, 0x7F, 0x7F, 0x14, 0x7F, 0x7F, 0x14, 0x00 }, // U+0023 (#)
{ 0x24, 0x2E, 0x6B, 0x6B, 0x3A, 0x12, 0x00, 0x00 }, // U+0024 ($)
{ 0x46, 0x66, 0x30, 0x18, 0x0C, 0x66, 0x62, 0x00 }, // U+0025 (%)
{ 0x30, 0x7A, 0x4F, 0x5D, 0x37, 0x7A, 0x48, 0x00 }, // U+0026 (&)
{ 0x04, 0x07, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00 }, // U+0027 (')
{ 0x00, 0x1C, 0x3E, 0x63, 0x41, 0x00, 0x00, 0x00 }, // U+0028 (()
{ 0x00, 0x41, 0x63, 0x3E, 0x1C, 0x00, 0x00, 0x00 }, // U+0029 ())
{ 0x08, 0x2A, 0x3E, 0x1C, 0x1C, 0x3E, 0x2A, 0x08 }, // U+002A (*)
{ 0x08, 0x08, 0x3E, 0x3E, 0x08, 0x08, 0x00, 0x00 }, // U+002B (+)
{ 0x00, 0x80, 0xE0, 0x60, 0x00, 0x00, 0x00, 0x00 }, // U+002C (,)
{ 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x00 }, // U+002D (-)
{ 0x00, 0x00, 0x60, 0x60, 0x00, 0x00, 0x00, 0x00 }, // U+002E (.)
{ 0x60, 0x30, 0x18, 0x0C, 0x06, 0x03, 0x01, 0x00 }, // U+002F (/)
{ 0x3E, 0x7F, 0x71, 0x59, 0x4D, 0x7F, 0x3E, 0x00 }, // U+0030 (0)
{ 0x40, 0x42, 0x7F, 0x7F, 0x40, 0x40, 0x00, 0x00 }, // U+0031 (1)
{ 0x62, 0x73, 0x59, 0x49, 0x6F, 0x66, 0x00, 0x00 }, // U+0032 (2)
{ 0x22, 0x63, 0x49, 0x49, 0x7F, 0x36, 0x00, 0x00 }, // U+0033 (3)
{ 0x18, 0x1C, 0x16, 0x53, 0x7F, 0x7F, 0x50, 0x00 }, // U+0034 (4)
{ 0x27, 0x67, 0x45, 0x45, 0x7D, 0x39, 0x00, 0x00 }, // U+0035 (5)
{ 0x3C, 0x7E, 0x4B, 0x49, 0x79, 0x30, 0x00, 0x00 }, // U+0036 (6)
{ 0x03, 0x03, 0x71, 0x79, 0x0F, 0x07, 0x00, 0x00 }, // U+0037 (7)
{ 0x36, 0x7F, 0x49, 0x49, 0x7F, 0x36, 0x00, 0x00 }, // U+0038 (8)
{ 0x06, 0x4F, 0x49, 0x69, 0x3F, 0x1E, 0x00, 0x00 }, // U+0039 (9)
{ 0x00, 0x00, 0x66, 0x66, 0x00, 0x00, 0x00, 0x00 }, // U+003A (:)
{ 0x00, 0x80, 0xE6, 0x66, 0x00, 0x00, 0x00, 0x00 }, // U+003B (;)
{ 0x08, 0x1C, 0x36, 0x63, 0x41, 0x00, 0x00, 0x00 }, // U+003C (<)
{ 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x00, 0x00 }, // U+003D (=)
{ 0x00, 0x41, 0x63, 0x36, 0x1C, 0x08, 0x00, 0x00 }, // U+003E (>)
{ 0x02, 0x03, 0x51, 0x59, 0x0F, 0x06, 0x00, 0x00 }, // U+003F (?)
{ 0x3E, 0x7F, 0x41, 0x5D, 0x5D, 0x1F, 0x1E, 0x00 }, // U+0040 (@)
{ 0x7C, 0x7E, 0x13, 0x13, 0x7E, 0x7C, 0x00, 0x00 }, // U+0041 (A)
{ 0x41, 0x7F, 0x7F, 0x49, 0x49, 0x7F, 0x36, 0x00 }, // U+0042 (B)
{ 0x1C, 0x3E, 0x63, 0x41, 0x41, 0x63, 0x22, 0x00 }, // U+0043 (C)
{ 0x41, 0x7F, 0x7F, 0x41, 0x63, 0x3E, 0x1C, 0x00 }, // U+0044 (D)
{ 0x41, 0x7F, 0x7F, 0x49, 0x5D, 0x41, 0x63, 0x00 }, // U+0045 (E)
{ 0x41, 0x7F, 0x7F, 0x49, 0x1D, 0x01, 0x03, 0x00 }, // U+0046 (F)
{ 0x1C, 0x3E, 0x63, 0x41, 0x51, 0x73, 0x72, 0x00 }, // U+0047 (G)
{ 0x7F, 0x7F, 0x08, 0x08, 0x7F, 0x7F, 0x00, 0x00 }, // U+0048 (H)
{ 0x00, 0x41, 0x7F, 0x7F, 0x41, 0x00, 0x00, 0x00 }, // U+0049 (I)
{ 0x30, 0x70, 0x40, 0x41, 0x7F, 0x3F, 0x01, 0x00 }, // U+004A (J)
{ 0x41, 0x7F, 0x7F, 0x08, 0x1C, 0x77, 0x63, 0x00 }, // U+004B (K)
{ 0x41, 0x7F, 0x7F, 0x41, 0x40, 0x60, 0x70, 0x00 }, // U+004C (L)
{ 0x7F, 0x7F, 0x0E, 0x1C, 0x0E, 0x7F, 0x7F, 0x00 }, // U+004D (M)
{ 0x7F, 0x7F, 0x06, 0x0C, 0x18, 0x7F, 0x7F, 0x00 }, // U+004E (N)
{ 0x1C, 0x3E, 0x63, 0x41, 0x63, 0x3E, 0x1C, 0x00 }, // U+004F (O)
{ 0x41, 0x7F, 0x7F, 0x49, 0x09, 0x0F, 0x06, 0x00 }, // U+0050 (P)
{ 0x1E, 0x3F, 0x21, 0x71, 0x7F, 0x5E, 0x00, 0x00 }, // U+0051 (Q)
{ 0x41, 0x7F, 0x7F, 0x09, 0x19, 0x7F, 0x66, 0x00 }, // U+0052 (R)
{ 0x26, 0x6F, 0x4D, 0x59, 0x73, 0x32, 0x00, 0x00 }, // U+0053 (S)
{ 0x03, 0x41, 0x7F, 0x7F, 0x41, 0x03, 0x00, 0x00 }, // U+0054 (T)
{ 0x7F, 0x7F, 0x40, 0x40, 0x7F, 0x7F, 0x00, 0x00 }, // U+0055 (U)
{ 0x1F, 0x3F, 0x60, 0x60, 0x3F, 0x1F, 0x00, 0x00 }, // U+0056 (V)
{ 0x7F, 0x7F, 0x30, 0x18, 0x30, 0x7F, 0x7F, 0x00 }, // U+0057 (W)
{ 0x43, 0x67, 0x3C, 0x18, 0x3C, 0x67, 0x43, 0x00 }, // U+0058 (X)
{ 0x07, 0x4F, 0x78, 0x78, 0x4F, 0x07, 0x00, 0x00 }, // U+0059 (Y)
{ 0x47, 0x63, 0x71, 0x59, 0x4D, 0x67, 0x73, 0x00 }, // U+005A (Z)
{ 0x00, 0x7F, 0x7F, 0x41, 0x41, 0x00, 0x00, 0x00 }, // U+005B ([)
{ 0x01, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0x00 }, // U+005C (\)
{ 0x00, 0x41, 0x41, 0x7F, 0x7F, 0x00, 0x00, 0x00 }, // U+005D (])
{ 0x08, 0x0C, 0x06, 0x03, 0x06, 0x0C, 0x08, 0x00 }, // U+005E (^)
{ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 }, // U+005F (_)
{ 0x00, 0x00, 0x03, 0x07, 0x04, 0x00, 0x00, 0x00 }, // U+0060 (`)
{ 0x20, 0x74, 0x54, 0x54, 0x3C, 0x78, 0x40, 0x00 }, // U+0061 (a)
{ 0x41, 0x7F, 0x3F, 0x48, 0x48, 0x78, 0x30, 0x00 }, // U+0062 (b)
{ 0x38, 0x7C, 0x44, 0x44, 0x6C, 0x28, 0x00, 0x00 }, // U+0063 (c)
{ 0x30, 0x78, 0x48, 0x49, 0x3F, 0x7F, 0x40, 0x00 }, // U+0064 (d)
{ 0x38, 0x7C, 0x54, 0x54, 0x5C, 0x18, 0x00, 0x00 }, // U+0065 (e)
{ 0x48, 0x7E, 0x7F, 0x49, 0x03, 0x02, 0x00, 0x00 }, // U+0066 (f)
{ 0x98, 0xBC, 0xA4, 0xA4, 0xF8, 0x7C, 0x04, 0x00 }, // U+0067 (g)
{ 0x41, 0x7F, 0x7F, 0x08, 0x04, 0x7C, 0x78, 0x00 }, // U+0068 (h)
{ 0x00, 0x44, 0x7D, 0x7D, 0x40, 0x00, 0x00, 0x00 }, // U+0069 (i)
{ 0x60, 0xE0, 0x80, 0x80, 0xFD, 0x7D, 0x00, 0x00 }, // U+006A (j)
{ 0x41, 0x7F, 0x7F, 0x10, 0x38, 0x6C, 0x44, 0x00 }, // U+006B (k)
{ 0x00, 0x41, 0x7F, 0x7F, 0x40, 0x00, 0x00, 0x00 }, // U+006C (l)
{ 0x7C, 0x7C, 0x18, 0x38, 0x1C, 0x7C, 0x78, 0x00 }, // U+006D (m)
{ 0x7C, 0x7C, 0x04, 0x04, 0x7C, 0x78, 0x00, 0x00 }, // U+006E (n)
{ 0x38, 0x7C, 0x44, 0x44, 0x7C, 0x38, 0x00, 0x00 }, // U+006F (o)
{ 0x84, 0xFC, 0xF8, 0xA4, 0x24, 0x3C, 0x18, 0x00 }, // U+0070 (p)
{ 0x18, 0x3C, 0x24, 0xA4, 0xF8, 0xFC, 0x84, 0x00 }, // U+0071 (q)
{ 0x44, 0x7C, 0x78, 0x4C, 0x04, 0x1C, 0x18, 0x00 }, // U+0072 (r)
{ 0x48, 0x5C, 0x54, 0x54, 0x74, 0x24, 0x00, 0x00 }, // U+0073 (s)
{ 0x00, 0x04, 0x3E, 0x7F, 0x44, 0x24, 0x00, 0x00 }, // U+0074 (t)
{ 0x3C, 0x7C, 0x40, 0x40, 0x3C, 0x7C, 0x40, 0x00 }, // U+0075 (u)
{ 0x1C, 0x3C, 0x60, 0x60, 0x3C, 0x1C, 0x00, 0x00 }, // U+0076 (v)
{ 0x3C, 0x7C, 0x70, 0x38, 0x70, 0x7C, 0x3C, 0x00 }, // U+0077 (w)
{ 0x44, 0x6C, 0x38, 0x10, 0x38, 0x6C, 0x44, 0x00 }, // U+0078 (x)
{ 0x9C, 0xBC, 0xA0, 0xA0, 0xFC, 0x7C, 0x00, 0x00 }, // U+0079 (y)
{ 0x4C, 0x64, 0x74, 0x5C, 0x4C, 0x64, 0x00, 0x00 }, // U+007A (z)
{ 0x08, 0x08, 0x3E, 0x77, 0x41, 0x41, 0x00, 0x00 }, // U+007B ({)
{ 0x00, 0x00, 0x00, 0x77, 0x77, 0x00, 0x00, 0x00 }, // U+007C (|)
{ 0x41, 0x41, 0x77, 0x3E, 0x08, 0x08, 0x00, 0x00 }, // U+007D (})
{ 0x02, 0x03, 0x01, 0x03, 0x02, 0x03, 0x01, 0x00 }, // U+007E (~)
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } // U+007F
};
#endif /* MAIN_FONT8X8_BASIC_H_ */

View File

@ -0,0 +1,619 @@
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_log.h"
#include "ssd1306.h"
#include "font8x8_basic.h"
#define TAG "SSD1306"
#define PACK8 __attribute__((aligned( __alignof__( uint8_t ) ), packed ))
typedef union out_column_t {
uint32_t u32;
uint8_t u8[4];
} PACK8 out_column_t;
void ssd1306_init(SSD1306_t * dev, int width, int height)
{
if (dev->_address == SPIAddress) {
spi_init(dev, width, height);
} else {
i2c_init(dev, width, height);
}
// Initialize internal buffer
for (int i=0;i<dev->_pages;i++) {
memset(dev->_page[i]._segs, 0, 128);
}
}
int ssd1306_get_width(SSD1306_t * dev)
{
return dev->_width;
}
int ssd1306_get_height(SSD1306_t * dev)
{
return dev->_height;
}
int ssd1306_get_pages(SSD1306_t * dev)
{
return dev->_pages;
}
void ssd1306_show_buffer(SSD1306_t * dev)
{
if (dev->_address == SPIAddress) {
for (int page=0; page<dev->_pages;page++) {
spi_display_image(dev, page, 0, dev->_page[page]._segs, dev->_width);
}
} else {
for (int page=0; page<dev->_pages;page++) {
i2c_display_image(dev, page, 0, dev->_page[page]._segs, dev->_width);
}
}
}
void ssd1306_set_buffer(SSD1306_t * dev, uint8_t * buffer)
{
int index = 0;
for (int page=0; page<dev->_pages;page++) {
memcpy(&dev->_page[page]._segs, &buffer[index], 128);
index = index + 128;
}
}
void ssd1306_get_buffer(SSD1306_t * dev, uint8_t * buffer)
{
int index = 0;
for (int page=0; page<dev->_pages;page++) {
memcpy(&buffer[index], &dev->_page[page]._segs, 128);
index = index + 128;
}
}
void ssd1306_display_image(SSD1306_t * dev, int page, int seg, uint8_t * images, int width)
{
if (dev->_address == SPIAddress) {
spi_display_image(dev, page, seg, images, width);
} else {
i2c_display_image(dev, page, seg, images, width);
}
// Set to internal buffer
memcpy(&dev->_page[page]._segs[seg], images, width);
}
void ssd1306_display_text(SSD1306_t * dev, int page, char * text, int text_len, bool invert)
{
if (page >= dev->_pages) return;
int _text_len = text_len;
if (_text_len > 16) _text_len = 16;
uint8_t seg = 0;
uint8_t image[8];
for (uint8_t i = 0; i < _text_len; i++) {
memcpy(image, font8x8_basic_tr[(uint8_t)text[i]], 8);
if (invert) ssd1306_invert(image, 8);
if (dev->_flip) ssd1306_flip(image, 8);
ssd1306_display_image(dev, page, seg, image, 8);
#if 0
if (dev->_address == SPIAddress) {
spi_display_image(dev, page, seg, image, 8);
} else {
i2c_display_image(dev, page, seg, image, 8);
}
#endif
seg = seg + 8;
}
}
// by Coert Vonk
void
ssd1306_display_text_x3(SSD1306_t * dev, int page, char * text, int text_len, bool invert)
{
if (page >= dev->_pages) return;
int _text_len = text_len;
if (_text_len > 5) _text_len = 5;
uint8_t seg = 0;
for (uint8_t nn = 0; nn < _text_len; nn++) {
uint8_t const * const in_columns = font8x8_basic_tr[(uint8_t)text[nn]];
// make the character 3x as high
out_column_t out_columns[8];
memset(out_columns, 0, sizeof(out_columns));
for (uint8_t xx = 0; xx < 8; xx++) { // for each column (x-direction)
uint32_t in_bitmask = 0b1;
uint32_t out_bitmask = 0b111;
for (uint8_t yy = 0; yy < 8; yy++) { // for pixel (y-direction)
if (in_columns[xx] & in_bitmask) {
out_columns[xx].u32 |= out_bitmask;
}
in_bitmask <<= 1;
out_bitmask <<= 3;
}
}
// render character in 8 column high pieces, making them 3x as wide
for (uint8_t yy = 0; yy < 3; yy++) { // for each group of 8 pixels high (y-direction)
uint8_t image[24];
for (uint8_t xx = 0; xx < 8; xx++) { // for each column (x-direction)
image[xx*3+0] =
image[xx*3+1] =
image[xx*3+2] = out_columns[xx].u8[yy];
}
if (invert) ssd1306_invert(image, 24);
if (dev->_flip) ssd1306_flip(image, 24);
if (dev->_address == SPIAddress) {
spi_display_image(dev, page+yy, seg, image, 24);
} else {
i2c_display_image(dev, page+yy, seg, image, 24);
}
memcpy(&dev->_page[page+yy]._segs[seg], image, 24);
}
seg = seg + 24;
}
}
void ssd1306_clear_screen(SSD1306_t * dev, bool invert)
{
char space[16];
memset(space, 0x00, sizeof(space));
for (int page = 0; page < dev->_pages; page++) {
ssd1306_display_text(dev, page, space, sizeof(space), invert);
}
}
void ssd1306_clear_line(SSD1306_t * dev, int page, bool invert)
{
char space[16];
memset(space, 0x00, sizeof(space));
ssd1306_display_text(dev, page, space, sizeof(space), invert);
}
void ssd1306_contrast(SSD1306_t * dev, int contrast)
{
if (dev->_address == SPIAddress) {
spi_contrast(dev, contrast);
} else {
i2c_contrast(dev, contrast);
}
}
void ssd1306_software_scroll(SSD1306_t * dev, int start, int end)
{
ESP_LOGD(TAG, "software_scroll start=%d end=%d _pages=%d", start, end, dev->_pages);
if (start < 0 || end < 0) {
dev->_scEnable = false;
} else if (start >= dev->_pages || end >= dev->_pages) {
dev->_scEnable = false;
} else {
dev->_scEnable = true;
dev->_scStart = start;
dev->_scEnd = end;
dev->_scDirection = 1;
if (start > end ) dev->_scDirection = -1;
}
}
void ssd1306_scroll_text(SSD1306_t * dev, char * text, int text_len, bool invert)
{
ESP_LOGD(TAG, "dev->_scEnable=%d", dev->_scEnable);
if (dev->_scEnable == false) return;
void (*func)(SSD1306_t * dev, int page, int seg, uint8_t * images, int width);
if (dev->_address == SPIAddress) {
func = spi_display_image;
} else {
func = i2c_display_image;
}
int srcIndex = dev->_scEnd - dev->_scDirection;
while(1) {
int dstIndex = srcIndex + dev->_scDirection;
ESP_LOGD(TAG, "srcIndex=%d dstIndex=%d", srcIndex,dstIndex);
for(int seg = 0; seg < dev->_width; seg++) {
dev->_page[dstIndex]._segs[seg] = dev->_page[srcIndex]._segs[seg];
}
(*func)(dev, dstIndex, 0, dev->_page[dstIndex]._segs, sizeof(dev->_page[dstIndex]._segs));
if (srcIndex == dev->_scStart) break;
srcIndex = srcIndex - dev->_scDirection;
}
int _text_len = text_len;
if (_text_len > 16) _text_len = 16;
ssd1306_display_text(dev, srcIndex, text, text_len, invert);
}
void ssd1306_scroll_clear(SSD1306_t * dev)
{
ESP_LOGD(TAG, "dev->_scEnable=%d", dev->_scEnable);
if (dev->_scEnable == false) return;
int srcIndex = dev->_scEnd - dev->_scDirection;
while(1) {
int dstIndex = srcIndex + dev->_scDirection;
ESP_LOGD(TAG, "srcIndex=%d dstIndex=%d", srcIndex,dstIndex);
ssd1306_clear_line(dev, dstIndex, false);
if (dstIndex == dev->_scStart) break;
srcIndex = srcIndex - dev->_scDirection;
}
}
void ssd1306_hardware_scroll(SSD1306_t * dev, ssd1306_scroll_type_t scroll)
{
if (dev->_address == SPIAddress) {
spi_hardware_scroll(dev, scroll);
} else {
i2c_hardware_scroll(dev, scroll);
}
}
// delay = 0 : display with no wait
// delay > 0 : display with wait
// delay < 0 : no display
void ssd1306_wrap_arround(SSD1306_t * dev, ssd1306_scroll_type_t scroll, int start, int end, int8_t delay)
{
if (scroll == SCROLL_RIGHT) {
int _start = start; // 0 to 7
int _end = end; // 0 to 7
if (_end >= dev->_pages) _end = dev->_pages - 1;
uint8_t wk;
//for (int page=0;page<dev->_pages;page++) {
for (int page=_start;page<=_end;page++) {
wk = dev->_page[page]._segs[127];
for (int seg=127;seg>0;seg--) {
dev->_page[page]._segs[seg] = dev->_page[page]._segs[seg-1];
}
dev->_page[page]._segs[0] = wk;
}
} else if (scroll == SCROLL_LEFT) {
int _start = start; // 0 to 7
int _end = end; // 0 to 7
if (_end >= dev->_pages) _end = dev->_pages - 1;
uint8_t wk;
//for (int page=0;page<dev->_pages;page++) {
for (int page=_start;page<=_end;page++) {
wk = dev->_page[page]._segs[0];
for (int seg=0;seg<127;seg++) {
dev->_page[page]._segs[seg] = dev->_page[page]._segs[seg+1];
}
dev->_page[page]._segs[127] = wk;
}
} else if (scroll == SCROLL_UP) {
int _start = start; // 0 to {width-1}
int _end = end; // 0 to {width-1}
if (_end >= dev->_width) _end = dev->_width - 1;
uint8_t wk0;
uint8_t wk1;
uint8_t wk2;
uint8_t save[128];
// Save pages 0
for (int seg=0;seg<128;seg++) {
save[seg] = dev->_page[0]._segs[seg];
}
// Page0 to Page6
for (int page=0;page<dev->_pages-1;page++) {
//for (int seg=0;seg<128;seg++) {
for (int seg=_start;seg<=_end;seg++) {
wk0 = dev->_page[page]._segs[seg];
wk1 = dev->_page[page+1]._segs[seg];
if (dev->_flip) wk0 = ssd1306_rotate_byte(wk0);
if (dev->_flip) wk1 = ssd1306_rotate_byte(wk1);
if (seg == 0) {
ESP_LOGD(TAG, "b page=%d wk0=%02x wk1=%02x", page, wk0, wk1);
}
wk0 = wk0 >> 1;
wk1 = wk1 & 0x01;
wk1 = wk1 << 7;
wk2 = wk0 | wk1;
if (seg == 0) {
ESP_LOGD(TAG, "a page=%d wk0=%02x wk1=%02x wk2=%02x", page, wk0, wk1, wk2);
}
if (dev->_flip) wk2 = ssd1306_rotate_byte(wk2);
dev->_page[page]._segs[seg] = wk2;
}
}
// Page7
int pages = dev->_pages-1;
//for (int seg=0;seg<128;seg++) {
for (int seg=_start;seg<=_end;seg++) {
wk0 = dev->_page[pages]._segs[seg];
wk1 = save[seg];
if (dev->_flip) wk0 = ssd1306_rotate_byte(wk0);
if (dev->_flip) wk1 = ssd1306_rotate_byte(wk1);
wk0 = wk0 >> 1;
wk1 = wk1 & 0x01;
wk1 = wk1 << 7;
wk2 = wk0 | wk1;
if (dev->_flip) wk2 = ssd1306_rotate_byte(wk2);
dev->_page[pages]._segs[seg] = wk2;
}
} else if (scroll == SCROLL_DOWN) {
int _start = start; // 0 to {width-1}
int _end = end; // 0 to {width-1}
if (_end >= dev->_width) _end = dev->_width - 1;
uint8_t wk0;
uint8_t wk1;
uint8_t wk2;
uint8_t save[128];
// Save pages 7
int pages = dev->_pages-1;
for (int seg=0;seg<128;seg++) {
save[seg] = dev->_page[pages]._segs[seg];
}
// Page7 to Page1
for (int page=pages;page>0;page--) {
//for (int seg=0;seg<128;seg++) {
for (int seg=_start;seg<=_end;seg++) {
wk0 = dev->_page[page]._segs[seg];
wk1 = dev->_page[page-1]._segs[seg];
if (dev->_flip) wk0 = ssd1306_rotate_byte(wk0);
if (dev->_flip) wk1 = ssd1306_rotate_byte(wk1);
if (seg == 0) {
ESP_LOGD(TAG, "b page=%d wk0=%02x wk1=%02x", page, wk0, wk1);
}
wk0 = wk0 << 1;
wk1 = wk1 & 0x80;
wk1 = wk1 >> 7;
wk2 = wk0 | wk1;
if (seg == 0) {
ESP_LOGD(TAG, "a page=%d wk0=%02x wk1=%02x wk2=%02x", page, wk0, wk1, wk2);
}
if (dev->_flip) wk2 = ssd1306_rotate_byte(wk2);
dev->_page[page]._segs[seg] = wk2;
}
}
// Page0
//for (int seg=0;seg<128;seg++) {
for (int seg=_start;seg<=_end;seg++) {
wk0 = dev->_page[0]._segs[seg];
wk1 = save[seg];
if (dev->_flip) wk0 = ssd1306_rotate_byte(wk0);
if (dev->_flip) wk1 = ssd1306_rotate_byte(wk1);
wk0 = wk0 << 1;
wk1 = wk1 & 0x80;
wk1 = wk1 >> 7;
wk2 = wk0 | wk1;
if (dev->_flip) wk2 = ssd1306_rotate_byte(wk2);
dev->_page[0]._segs[seg] = wk2;
}
}
if (delay >= 0) {
for (int page=0;page<dev->_pages;page++) {
if (dev->_address == SPIAddress) {
spi_display_image(dev, page, 0, dev->_page[page]._segs, 128);
} else {
i2c_display_image(dev, page, 0, dev->_page[page]._segs, 128);
}
if (delay) vTaskDelay(delay);
}
}
}
void ssd1306_bitmaps(SSD1306_t * dev, int xpos, int ypos, uint8_t * bitmap, int width, int height, bool invert)
{
if ( (width % 8) != 0) {
ESP_LOGE(TAG, "width must be a multiple of 8");
return;
}
int _width = width / 8;
uint8_t wk0;
uint8_t wk1;
uint8_t wk2;
uint8_t page = (ypos / 8);
uint8_t _seg = xpos;
uint8_t dstBits = (ypos % 8);
ESP_LOGD(TAG, "ypos=%d page=%d dstBits=%d", ypos, page, dstBits);
int offset = 0;
for(int _height=0;_height<height;_height++) {
for (int index=0;index<_width;index++) {
for (int srcBits=7; srcBits>=0; srcBits--) {
wk0 = dev->_page[page]._segs[_seg];
if (dev->_flip) wk0 = ssd1306_rotate_byte(wk0);
wk1 = bitmap[index+offset];
if (invert) wk1 = ~wk1;
//wk2 = ssd1306_copy_bit(bitmap[index+offset], srcBits, wk0, dstBits);
wk2 = ssd1306_copy_bit(wk1, srcBits, wk0, dstBits);
if (dev->_flip) wk2 = ssd1306_rotate_byte(wk2);
ESP_LOGD(TAG, "index=%d offset=%d page=%d _seg=%d, wk2=%02x", index, offset, page, _seg, wk2);
dev->_page[page]._segs[_seg] = wk2;
_seg++;
}
}
vTaskDelay(1);
offset = offset + _width;
dstBits++;
_seg = xpos;
if (dstBits == 8) {
page++;
dstBits=0;
}
}
#if 0
for (int _seg=ypos;_seg<ypos+width;_seg++) {
ssd1306_dump_page(dev, page-1, _seg);
}
for (int _seg=ypos;_seg<ypos+width;_seg++) {
ssd1306_dump_page(dev, page, _seg);
}
#endif
ssd1306_show_buffer(dev);
}
// Set pixel to internal buffer. Not show it.
void _ssd1306_pixel(SSD1306_t * dev, int xpos, int ypos, bool invert)
{
uint8_t _page = (ypos / 8);
uint8_t _bits = (ypos % 8);
uint8_t _seg = xpos;
uint8_t wk0 = dev->_page[_page]._segs[_seg];
uint8_t wk1 = 1 << _bits;
ESP_LOGD(TAG, "ypos=%d _page=%d _bits=%d wk0=0x%02x wk1=0x%02x", ypos, _page, _bits, wk0, wk1);
if (invert) {
wk0 = wk0 & ~wk1;
} else {
wk0 = wk0 | wk1;
}
if (dev->_flip) wk0 = ssd1306_rotate_byte(wk0);
ESP_LOGD(TAG, "wk0=0x%02x wk1=0x%02x", wk0, wk1);
dev->_page[_page]._segs[_seg] = wk0;
}
// Set line to internal buffer. Not show it.
void _ssd1306_line(SSD1306_t * dev, int x1, int y1, int x2, int y2, bool invert)
{
int i;
int dx,dy;
int sx,sy;
int E;
/* distance between two points */
dx = ( x2 > x1 ) ? x2 - x1 : x1 - x2;
dy = ( y2 > y1 ) ? y2 - y1 : y1 - y2;
/* direction of two point */
sx = ( x2 > x1 ) ? 1 : -1;
sy = ( y2 > y1 ) ? 1 : -1;
/* inclination < 1 */
if ( dx > dy ) {
E = -dx;
for ( i = 0 ; i <= dx ; i++ ) {
_ssd1306_pixel(dev, x1, y1, invert);
x1 += sx;
E += 2 * dy;
if ( E >= 0 ) {
y1 += sy;
E -= 2 * dx;
}
}
/* inclination >= 1 */
} else {
E = -dy;
for ( i = 0 ; i <= dy ; i++ ) {
_ssd1306_pixel(dev, x1, y1, invert);
y1 += sy;
E += 2 * dx;
if ( E >= 0 ) {
x1 += sx;
E -= 2 * dy;
}
}
}
}
void ssd1306_invert(uint8_t *buf, size_t blen)
{
uint8_t wk;
for(int i=0; i<blen; i++){
wk = buf[i];
buf[i] = ~wk;
}
}
// Flip upside down
void ssd1306_flip(uint8_t *buf, size_t blen)
{
for(int i=0; i<blen; i++){
buf[i] = ssd1306_rotate_byte(buf[i]);
}
}
uint8_t ssd1306_copy_bit(uint8_t src, int srcBits, uint8_t dst, int dstBits)
{
ESP_LOGD(TAG, "src=%02x srcBits=%d dst=%02x dstBits=%d", src, srcBits, dst, dstBits);
uint8_t smask = 0x01 << srcBits;
uint8_t dmask = 0x01 << dstBits;
uint8_t _src = src & smask;
#if 0
if (_src != 0) _src = 1;
uint8_t _wk = _src << dstBits;
uint8_t _dst = dst | _wk;
#endif
uint8_t _dst;
if (_src != 0) {
_dst = dst | dmask; // set bit
} else {
_dst = dst & ~(dmask); // clear bit
}
return _dst;
}
// Rotate 8-bit data
// 0x12-->0x48
uint8_t ssd1306_rotate_byte(uint8_t ch1) {
uint8_t ch2 = 0;
for (int j=0;j<8;j++) {
ch2 = (ch2 << 1) + (ch1 & 0x01);
ch1 = ch1 >> 1;
}
return ch2;
}
void ssd1306_fadeout(SSD1306_t * dev)
{
void (*func)(SSD1306_t * dev, int page, int seg, uint8_t * images, int width);
if (dev->_address == SPIAddress) {
func = spi_display_image;
} else {
func = i2c_display_image;
}
uint8_t image[1];
for(int page=0; page<dev->_pages; page++) {
image[0] = 0xFF;
for(int line=0; line<8; line++) {
if (dev->_flip) {
image[0] = image[0] >> 1;
} else {
image[0] = image[0] << 1;
}
for(int seg=0; seg<128; seg++) {
(*func)(dev, page, seg, image, 1);
dev->_page[page]._segs[seg] = image[0];
}
}
}
}
void ssd1306_dump(SSD1306_t dev)
{
printf("_address=%x\n",dev._address);
printf("_width=%x\n",dev._width);
printf("_height=%x\n",dev._height);
printf("_pages=%x\n",dev._pages);
}
void ssd1306_dump_page(SSD1306_t * dev, int page, int seg)
{
ESP_LOGI(TAG, "dev->_page[%d]._segs[%d]=%02x", page, seg, dev->_page[page]._segs[seg]);
}

View File

@ -0,0 +1,157 @@
#ifndef MAIN_SSD1306_H_
#define MAIN_SSD1306_H_
#include "driver/spi_master.h"
// Following definitions are bollowed from
// http://robotcantalk.blogspot.com/2015/03/interfacing-arduino-with-ssd1306-driven.html
/* Control byte for i2c
Co : bit 8 : Continuation Bit
* 1 = no-continuation (only one byte to follow)
* 0 = the controller should expect a stream of bytes.
D/C# : bit 7 : Data/Command Select bit
* 1 = the next byte or byte stream will be Data.
* 0 = a Command byte or byte stream will be coming up next.
Bits 6-0 will be all zeros.
Usage:
0x80 : Single Command byte
0x00 : Command Stream
0xC0 : Single Data byte
0x40 : Data Stream
*/
#define OLED_CONTROL_BYTE_CMD_SINGLE 0x80
#define OLED_CONTROL_BYTE_CMD_STREAM 0x00
#define OLED_CONTROL_BYTE_DATA_SINGLE 0xC0
#define OLED_CONTROL_BYTE_DATA_STREAM 0x40
// Fundamental commands (pg.28)
#define OLED_CMD_SET_CONTRAST 0x81 // follow with 0x7F
#define OLED_CMD_DISPLAY_RAM 0xA4
#define OLED_CMD_DISPLAY_ALLON 0xA5
#define OLED_CMD_DISPLAY_NORMAL 0xA6
#define OLED_CMD_DISPLAY_INVERTED 0xA7
#define OLED_CMD_DISPLAY_OFF 0xAE
#define OLED_CMD_DISPLAY_ON 0xAF
// Addressing Command Table (pg.30)
#define OLED_CMD_SET_MEMORY_ADDR_MODE 0x20
#define OLED_CMD_SET_HORI_ADDR_MODE 0x00 // Horizontal Addressing Mode
#define OLED_CMD_SET_VERT_ADDR_MODE 0x01 // Vertical Addressing Mode
#define OLED_CMD_SET_PAGE_ADDR_MODE 0x02 // Page Addressing Mode
#define OLED_CMD_SET_COLUMN_RANGE 0x21 // can be used only in HORZ/VERT mode - follow with 0x00 and 0x7F = COL127
#define OLED_CMD_SET_PAGE_RANGE 0x22 // can be used only in HORZ/VERT mode - follow with 0x00 and 0x07 = PAGE7
// Hardware Config (pg.31)
#define OLED_CMD_SET_DISPLAY_START_LINE 0x40
#define OLED_CMD_SET_SEGMENT_REMAP_0 0xA0
#define OLED_CMD_SET_SEGMENT_REMAP_1 0xA1
#define OLED_CMD_SET_MUX_RATIO 0xA8 // follow with 0x3F = 64 MUX
#define OLED_CMD_SET_COM_SCAN_MODE 0xC8
#define OLED_CMD_SET_DISPLAY_OFFSET 0xD3 // follow with 0x00
#define OLED_CMD_SET_COM_PIN_MAP 0xDA // follow with 0x12
#define OLED_CMD_NOP 0xE3 // NOP
// Timing and Driving Scheme (pg.32)
#define OLED_CMD_SET_DISPLAY_CLK_DIV 0xD5 // follow with 0x80
#define OLED_CMD_SET_PRECHARGE 0xD9 // follow with 0xF1
#define OLED_CMD_SET_VCOMH_DESELCT 0xDB // follow with 0x30
// Charge Pump (pg.62)
#define OLED_CMD_SET_CHARGE_PUMP 0x8D // follow with 0x14
// Scrolling Command
#define OLED_CMD_HORIZONTAL_RIGHT 0x26
#define OLED_CMD_HORIZONTAL_LEFT 0x27
#define OLED_CMD_CONTINUOUS_SCROLL 0x29
#define OLED_CMD_DEACTIVE_SCROLL 0x2E
#define OLED_CMD_ACTIVE_SCROLL 0x2F
#define OLED_CMD_VERTICAL 0xA3
#define I2CAddress 0x3C
#define SPIAddress 0xFF
typedef enum {
SCROLL_RIGHT = 1,
SCROLL_LEFT = 2,
SCROLL_DOWN = 3,
SCROLL_UP = 4,
SCROLL_STOP = 5
} ssd1306_scroll_type_t;
typedef struct {
bool _valid; // Not using it anymore
int _segLen; // Not using it anymore
uint8_t _segs[128];
} PAGE_t;
typedef struct {
int _address;
int _width;
int _height;
int _pages;
int _dc;
spi_device_handle_t _SPIHandle;
bool _scEnable;
int _scStart;
int _scEnd;
int _scDirection;
PAGE_t _page[8];
bool _flip;
} SSD1306_t;
#ifdef __cplusplus
extern "C"
{
#endif
void ssd1306_init(SSD1306_t * dev, int width, int height);
int ssd1306_get_width(SSD1306_t * dev);
int ssd1306_get_height(SSD1306_t * dev);
int ssd1306_get_pages(SSD1306_t * dev);
void ssd1306_show_buffer(SSD1306_t * dev);
void ssd1306_set_buffer(SSD1306_t * dev, uint8_t * buffer);
void ssd1306_get_buffer(SSD1306_t * dev, uint8_t * buffer);
void ssd1306_display_image(SSD1306_t * dev, int page, int seg, uint8_t * images, int width);
void ssd1306_display_text(SSD1306_t * dev, int page, char * text, int text_len, bool invert);
void ssd1306_display_text_x3(SSD1306_t * dev, int page, char * text, int text_len, bool invert);
void ssd1306_clear_screen(SSD1306_t * dev, bool invert);
void ssd1306_clear_line(SSD1306_t * dev, int page, bool invert);
void ssd1306_contrast(SSD1306_t * dev, int contrast);
void ssd1306_software_scroll(SSD1306_t * dev, int start, int end);
void ssd1306_scroll_text(SSD1306_t * dev, char * text, int text_len, bool invert);
void ssd1306_scroll_clear(SSD1306_t * dev);
void ssd1306_hardware_scroll(SSD1306_t * dev, ssd1306_scroll_type_t scroll);
void ssd1306_wrap_arround(SSD1306_t * dev, ssd1306_scroll_type_t scroll, int start, int end, int8_t delay);
void ssd1306_bitmaps(SSD1306_t * dev, int xpos, int ypos, uint8_t * bitmap, int width, int height, bool invert);
void _ssd1306_pixel(SSD1306_t * dev, int xpos, int ypos, bool invert);
void _ssd1306_line(SSD1306_t * dev, int x1, int y1, int x2, int y2, bool invert);
void ssd1306_invert(uint8_t *buf, size_t blen);
void ssd1306_flip(uint8_t *buf, size_t blen);
uint8_t ssd1306_copy_bit(uint8_t src, int srcBits, uint8_t dst, int dstBits);
uint8_t ssd1306_rotate_byte(uint8_t ch1);
void ssd1306_fadeout(SSD1306_t * dev);
void ssd1306_dump(SSD1306_t dev);
void ssd1306_dump_page(SSD1306_t * dev, int page, int seg);
void i2c_master_init(SSD1306_t * dev, int16_t sda, int16_t scl, int16_t reset);
void i2c_init(SSD1306_t * dev, int width, int height);
void i2c_display_image(SSD1306_t * dev, int page, int seg, uint8_t * images, int width);
void i2c_contrast(SSD1306_t * dev, int contrast);
void i2c_hardware_scroll(SSD1306_t * dev, ssd1306_scroll_type_t scroll);
void spi_master_init(SSD1306_t * dev, int16_t GPIO_MOSI, int16_t GPIO_SCLK, int16_t GPIO_CS, int16_t GPIO_DC, int16_t GPIO_RESET);
bool spi_master_write_byte(spi_device_handle_t SPIHandle, const uint8_t* Data, size_t DataLength );
bool spi_master_write_command(SSD1306_t * dev, uint8_t Command );
bool spi_master_write_data(SSD1306_t * dev, const uint8_t* Data, size_t DataLength );
void spi_init(SSD1306_t * dev, int width, int height);
void spi_display_image(SSD1306_t * dev, int page, int seg, uint8_t * images, int width);
void spi_contrast(SSD1306_t * dev, int contrast);
void spi_hardware_scroll(SSD1306_t * dev, ssd1306_scroll_type_t scroll);
#ifdef __cplusplus
}
#endif
#endif /* MAIN_SSD1306_H_ */

View File

@ -0,0 +1,253 @@
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/i2c.h"
#include "esp_log.h"
#include "ssd1306.h"
#define tag "SSD1306"
#if CONFIG_I2C_PORT_0
#define I2C_NUM I2C_NUM_0
#elif CONFIG_I2C_PORT_1
#define I2C_NUM I2C_NUM_1
#else
#define I2C_NUM I2C_NUM_0 // if spi is selected
#endif
#define I2C_MASTER_FREQ_HZ 400000 /*!< I2C clock of SSD1306 can run at 400 kHz max. */
void i2c_master_init(SSD1306_t * dev, int16_t sda, int16_t scl, int16_t reset)
{
i2c_config_t i2c_config = {
.mode = I2C_MODE_MASTER,
.sda_io_num = sda,
.scl_io_num = scl,
.sda_pullup_en = GPIO_PULLUP_ENABLE,
.scl_pullup_en = GPIO_PULLUP_ENABLE,
.master.clk_speed = I2C_MASTER_FREQ_HZ
};
ESP_ERROR_CHECK(i2c_param_config(I2C_NUM, &i2c_config));
ESP_ERROR_CHECK(i2c_driver_install(I2C_NUM, I2C_MODE_MASTER, 0, 0, 0));
if (reset >= 0) {
//gpio_pad_select_gpio(reset);
gpio_reset_pin(reset);
gpio_set_direction(reset, GPIO_MODE_OUTPUT);
gpio_set_level(reset, 0);
vTaskDelay(50 / portTICK_PERIOD_MS);
gpio_set_level(reset, 1);
}
dev->_address = I2CAddress;
dev->_flip = false;
}
void i2c_init(SSD1306_t * dev, int width, int height) {
dev->_width = width;
dev->_height = height;
dev->_pages = 8;
if (dev->_height == 32) dev->_pages = 4;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (dev->_address << 1) | I2C_MASTER_WRITE, true);
i2c_master_write_byte(cmd, OLED_CONTROL_BYTE_CMD_STREAM, true);
i2c_master_write_byte(cmd, OLED_CMD_DISPLAY_OFF, true); // AE
i2c_master_write_byte(cmd, OLED_CMD_SET_MUX_RATIO, true); // A8
if (dev->_height == 64) i2c_master_write_byte(cmd, 0x3F, true);
if (dev->_height == 32) i2c_master_write_byte(cmd, 0x1F, true);
i2c_master_write_byte(cmd, OLED_CMD_SET_DISPLAY_OFFSET, true); // D3
i2c_master_write_byte(cmd, 0x00, true);
//i2c_master_write_byte(cmd, OLED_CONTROL_BYTE_DATA_STREAM, true); // 40
i2c_master_write_byte(cmd, OLED_CMD_SET_DISPLAY_START_LINE, true); // 40
//i2c_master_write_byte(cmd, OLED_CMD_SET_SEGMENT_REMAP, true); // A1
if (dev->_flip) {
i2c_master_write_byte(cmd, OLED_CMD_SET_SEGMENT_REMAP_0, true); // A0
} else {
i2c_master_write_byte(cmd, OLED_CMD_SET_SEGMENT_REMAP_1, true); // A1
}
i2c_master_write_byte(cmd, OLED_CMD_SET_COM_SCAN_MODE, true); // C8
i2c_master_write_byte(cmd, OLED_CMD_SET_DISPLAY_CLK_DIV, true); // D5
i2c_master_write_byte(cmd, 0x80, true);
i2c_master_write_byte(cmd, OLED_CMD_SET_COM_PIN_MAP, true); // DA
if (dev->_height == 64) i2c_master_write_byte(cmd, 0x12, true);
if (dev->_height == 32) i2c_master_write_byte(cmd, 0x02, true);
i2c_master_write_byte(cmd, OLED_CMD_SET_CONTRAST, true); // 81
i2c_master_write_byte(cmd, 0xFF, true);
i2c_master_write_byte(cmd, OLED_CMD_DISPLAY_RAM, true); // A4
i2c_master_write_byte(cmd, OLED_CMD_SET_VCOMH_DESELCT, true); // DB
i2c_master_write_byte(cmd, 0x40, true);
i2c_master_write_byte(cmd, OLED_CMD_SET_MEMORY_ADDR_MODE, true); // 20
//i2c_master_write_byte(cmd, OLED_CMD_SET_HORI_ADDR_MODE, true); // 00
i2c_master_write_byte(cmd, OLED_CMD_SET_PAGE_ADDR_MODE, true); // 02
// Set Lower Column Start Address for Page Addressing Mode
i2c_master_write_byte(cmd, 0x00, true);
// Set Higher Column Start Address for Page Addressing Mode
i2c_master_write_byte(cmd, 0x10, true);
i2c_master_write_byte(cmd, OLED_CMD_SET_CHARGE_PUMP, true); // 8D
i2c_master_write_byte(cmd, 0x14, true);
i2c_master_write_byte(cmd, OLED_CMD_DEACTIVE_SCROLL, true); // 2E
i2c_master_write_byte(cmd, OLED_CMD_DISPLAY_NORMAL, true); // A6
i2c_master_write_byte(cmd, OLED_CMD_DISPLAY_ON, true); // AF
i2c_master_stop(cmd);
esp_err_t espRc = i2c_master_cmd_begin(I2C_NUM, cmd, 10/portTICK_PERIOD_MS);
if (espRc == ESP_OK) {
ESP_LOGI(tag, "OLED configured successfully");
} else {
ESP_LOGE(tag, "OLED configuration failed. code: 0x%.2X", espRc);
}
i2c_cmd_link_delete(cmd);
}
void i2c_display_image(SSD1306_t * dev, int page, int seg, uint8_t * images, int width) {
i2c_cmd_handle_t cmd;
if (page >= dev->_pages) return;
if (seg >= dev->_width) return;
int _seg = seg + CONFIG_OFFSETX;
uint8_t columLow = _seg & 0x0F;
uint8_t columHigh = (_seg >> 4) & 0x0F;
int _page = page;
if (dev->_flip) {
_page = (dev->_pages - page) - 1;
}
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (dev->_address << 1) | I2C_MASTER_WRITE, true);
i2c_master_write_byte(cmd, OLED_CONTROL_BYTE_CMD_STREAM, true);
// Set Lower Column Start Address for Page Addressing Mode
i2c_master_write_byte(cmd, (0x00 + columLow), true);
// Set Higher Column Start Address for Page Addressing Mode
i2c_master_write_byte(cmd, (0x10 + columHigh), true);
// Set Page Start Address for Page Addressing Mode
i2c_master_write_byte(cmd, 0xB0 | _page, true);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM, cmd, 10/portTICK_PERIOD_MS);
i2c_cmd_link_delete(cmd);
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (dev->_address << 1) | I2C_MASTER_WRITE, true);
i2c_master_write_byte(cmd, OLED_CONTROL_BYTE_DATA_STREAM, true);
i2c_master_write(cmd, images, width, true);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM, cmd, 10/portTICK_PERIOD_MS);
i2c_cmd_link_delete(cmd);
}
void i2c_contrast(SSD1306_t * dev, int contrast) {
i2c_cmd_handle_t cmd;
int _contrast = contrast;
if (contrast < 0x0) _contrast = 0;
if (contrast > 0xFF) _contrast = 0xFF;
cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (dev->_address << 1) | I2C_MASTER_WRITE, true);
i2c_master_write_byte(cmd, OLED_CONTROL_BYTE_CMD_STREAM, true);
i2c_master_write_byte(cmd, OLED_CMD_SET_CONTRAST, true); // 81
i2c_master_write_byte(cmd, _contrast, true);
i2c_master_stop(cmd);
i2c_master_cmd_begin(I2C_NUM, cmd, 10/portTICK_PERIOD_MS);
i2c_cmd_link_delete(cmd);
}
void i2c_hardware_scroll(SSD1306_t * dev, ssd1306_scroll_type_t scroll) {
esp_err_t espRc;
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (dev->_address << 1) | I2C_MASTER_WRITE, true);
i2c_master_write_byte(cmd, OLED_CONTROL_BYTE_CMD_STREAM, true);
if (scroll == SCROLL_RIGHT) {
i2c_master_write_byte(cmd, OLED_CMD_HORIZONTAL_RIGHT, true); // 26
i2c_master_write_byte(cmd, 0x00, true); // Dummy byte
i2c_master_write_byte(cmd, 0x00, true); // Define start page address
i2c_master_write_byte(cmd, 0x07, true); // Frame frequency
i2c_master_write_byte(cmd, 0x07, true); // Define end page address
i2c_master_write_byte(cmd, 0x00, true); //
i2c_master_write_byte(cmd, 0xFF, true); //
i2c_master_write_byte(cmd, OLED_CMD_ACTIVE_SCROLL, true); // 2F
}
if (scroll == SCROLL_LEFT) {
i2c_master_write_byte(cmd, OLED_CMD_HORIZONTAL_LEFT, true); // 27
i2c_master_write_byte(cmd, 0x00, true); // Dummy byte
i2c_master_write_byte(cmd, 0x00, true); // Define start page address
i2c_master_write_byte(cmd, 0x07, true); // Frame frequency
i2c_master_write_byte(cmd, 0x07, true); // Define end page address
i2c_master_write_byte(cmd, 0x00, true); //
i2c_master_write_byte(cmd, 0xFF, true); //
i2c_master_write_byte(cmd, OLED_CMD_ACTIVE_SCROLL, true); // 2F
}
if (scroll == SCROLL_DOWN) {
i2c_master_write_byte(cmd, OLED_CMD_CONTINUOUS_SCROLL, true); // 29
i2c_master_write_byte(cmd, 0x00, true); // Dummy byte
i2c_master_write_byte(cmd, 0x00, true); // Define start page address
i2c_master_write_byte(cmd, 0x07, true); // Frame frequency
//i2c_master_write_byte(cmd, 0x01, true); // Define end page address
i2c_master_write_byte(cmd, 0x00, true); // Define end page address
i2c_master_write_byte(cmd, 0x3F, true); // Vertical scrolling offset
i2c_master_write_byte(cmd, OLED_CMD_VERTICAL, true); // A3
i2c_master_write_byte(cmd, 0x00, true);
if (dev->_height == 64)
//i2c_master_write_byte(cmd, 0x7F, true);
i2c_master_write_byte(cmd, 0x40, true);
if (dev->_height == 32)
i2c_master_write_byte(cmd, 0x20, true);
i2c_master_write_byte(cmd, OLED_CMD_ACTIVE_SCROLL, true); // 2F
}
if (scroll == SCROLL_UP) {
i2c_master_write_byte(cmd, OLED_CMD_CONTINUOUS_SCROLL, true); // 29
i2c_master_write_byte(cmd, 0x00, true); // Dummy byte
i2c_master_write_byte(cmd, 0x00, true); // Define start page address
i2c_master_write_byte(cmd, 0x07, true); // Frame frequency
//i2c_master_write_byte(cmd, 0x01, true); // Define end page address
i2c_master_write_byte(cmd, 0x00, true); // Define end page address
i2c_master_write_byte(cmd, 0x01, true); // Vertical scrolling offset
i2c_master_write_byte(cmd, OLED_CMD_VERTICAL, true); // A3
i2c_master_write_byte(cmd, 0x00, true);
if (dev->_height == 64)
//i2c_master_write_byte(cmd, 0x7F, true);
i2c_master_write_byte(cmd, 0x40, true);
if (dev->_height == 32)
i2c_master_write_byte(cmd, 0x20, true);
i2c_master_write_byte(cmd, OLED_CMD_ACTIVE_SCROLL, true); // 2F
}
if (scroll == SCROLL_STOP) {
i2c_master_write_byte(cmd, OLED_CMD_DEACTIVE_SCROLL, true); // 2E
}
i2c_master_stop(cmd);
espRc = i2c_master_cmd_begin(I2C_NUM, cmd, 10/portTICK_PERIOD_MS);
if (espRc == ESP_OK) {
ESP_LOGD(tag, "Scroll command succeeded");
} else {
ESP_LOGE(tag, "Scroll command failed. code: 0x%.2X", espRc);
}
i2c_cmd_link_delete(cmd);
}

View File

@ -0,0 +1,254 @@
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/spi_master.h"
#include "driver/gpio.h"
#include "esp_log.h"
#include "ssd1306.h"
#define TAG "SSD1306"
#if CONFIG_SPI2_HOST
#define HOST_ID SPI2_HOST
#elif CONFIG_SPI3_HOST
#define HOST_ID SPI3_HOST
#else
#define HOST_ID SPI2_HOST // If i2c is selected
#endif
static const int SPI_Command_Mode = 0;
static const int SPI_Data_Mode = 1;
static const int SPI_Frequency = 1000000; // 1MHz
void spi_master_init(SSD1306_t * dev, int16_t GPIO_MOSI, int16_t GPIO_SCLK, int16_t GPIO_CS, int16_t GPIO_DC, int16_t GPIO_RESET)
{
esp_err_t ret;
//gpio_pad_select_gpio( GPIO_CS );
gpio_reset_pin( GPIO_CS );
gpio_set_direction( GPIO_CS, GPIO_MODE_OUTPUT );
gpio_set_level( GPIO_CS, 0 );
//gpio_pad_select_gpio( GPIO_DC );
gpio_reset_pin( GPIO_DC );
gpio_set_direction( GPIO_DC, GPIO_MODE_OUTPUT );
gpio_set_level( GPIO_DC, 0 );
if ( GPIO_RESET >= 0 ) {
//gpio_pad_select_gpio( GPIO_RESET );
gpio_reset_pin( GPIO_RESET );
gpio_set_direction( GPIO_RESET, GPIO_MODE_OUTPUT );
gpio_set_level( GPIO_RESET, 0 );
vTaskDelay( pdMS_TO_TICKS( 100 ) );
gpio_set_level( GPIO_RESET, 1 );
}
spi_bus_config_t spi_bus_config = {
.mosi_io_num = GPIO_MOSI,
.miso_io_num = -1,
.sclk_io_num = GPIO_SCLK,
.quadwp_io_num = -1,
.quadhd_io_num = -1,
.max_transfer_sz = 0,
.flags = 0
};
ESP_LOGI(TAG, "SPI HOST_ID=%d", HOST_ID);
ret = spi_bus_initialize( HOST_ID, &spi_bus_config, SPI_DMA_CH_AUTO );
ESP_LOGI(TAG, "spi_bus_initialize=%d",ret);
assert(ret==ESP_OK);
spi_device_interface_config_t devcfg;
memset( &devcfg, 0, sizeof( spi_device_interface_config_t ) );
devcfg.clock_speed_hz = SPI_Frequency;
devcfg.spics_io_num = GPIO_CS;
devcfg.queue_size = 1;
spi_device_handle_t handle;
ret = spi_bus_add_device( HOST_ID, &devcfg, &handle);
ESP_LOGI(TAG, "spi_bus_add_device=%d",ret);
assert(ret==ESP_OK);
dev->_dc = GPIO_DC;
dev->_SPIHandle = handle;
dev->_address = SPIAddress;
dev->_flip = false;
}
bool spi_master_write_byte(spi_device_handle_t SPIHandle, const uint8_t* Data, size_t DataLength )
{
spi_transaction_t SPITransaction;
if ( DataLength > 0 ) {
memset( &SPITransaction, 0, sizeof( spi_transaction_t ) );
SPITransaction.length = DataLength * 8;
SPITransaction.tx_buffer = Data;
spi_device_transmit( SPIHandle, &SPITransaction );
}
return true;
}
bool spi_master_write_command(SSD1306_t * dev, uint8_t Command )
{
static uint8_t CommandByte = 0;
CommandByte = Command;
gpio_set_level( dev->_dc, SPI_Command_Mode );
return spi_master_write_byte( dev->_SPIHandle, &CommandByte, 1 );
}
bool spi_master_write_data(SSD1306_t * dev, const uint8_t* Data, size_t DataLength )
{
gpio_set_level( dev->_dc, SPI_Data_Mode );
return spi_master_write_byte( dev->_SPIHandle, Data, DataLength );
}
void spi_init(SSD1306_t * dev, int width, int height)
{
dev->_width = width;
dev->_height = height;
dev->_pages = 8;
if (dev->_height == 32) dev->_pages = 4;
spi_master_write_command(dev, OLED_CMD_DISPLAY_OFF); // AE
spi_master_write_command(dev, OLED_CMD_SET_MUX_RATIO); // A8
if (dev->_height == 64) spi_master_write_command(dev, 0x3F);
if (dev->_height == 32) spi_master_write_command(dev, 0x1F);
spi_master_write_command(dev, OLED_CMD_SET_DISPLAY_OFFSET); // D3
spi_master_write_command(dev, 0x00);
spi_master_write_command(dev, OLED_CONTROL_BYTE_DATA_STREAM); // 40
if (dev->_flip) {
spi_master_write_command(dev, OLED_CMD_SET_SEGMENT_REMAP_0); // A0
} else {
spi_master_write_command(dev, OLED_CMD_SET_SEGMENT_REMAP_1); // A1
}
//spi_master_write_command(dev, OLED_CMD_SET_SEGMENT_REMAP); // A1
spi_master_write_command(dev, OLED_CMD_SET_COM_SCAN_MODE); // C8
spi_master_write_command(dev, OLED_CMD_SET_DISPLAY_CLK_DIV); // D5
spi_master_write_command(dev, 0x80);
spi_master_write_command(dev, OLED_CMD_SET_COM_PIN_MAP); // DA
if (dev->_height == 64) spi_master_write_command(dev, 0x12);
if (dev->_height == 32) spi_master_write_command(dev, 0x02);
spi_master_write_command(dev, OLED_CMD_SET_CONTRAST); // 81
spi_master_write_command(dev, 0xFF);
spi_master_write_command(dev, OLED_CMD_DISPLAY_RAM); // A4
spi_master_write_command(dev, OLED_CMD_SET_VCOMH_DESELCT); // DB
spi_master_write_command(dev, 0x40);
spi_master_write_command(dev, OLED_CMD_SET_MEMORY_ADDR_MODE); // 20
//spi_master_write_command(dev, OLED_CMD_SET_HORI_ADDR_MODE); // 00
spi_master_write_command(dev, OLED_CMD_SET_PAGE_ADDR_MODE); // 02
// Set Lower Column Start Address for Page Addressing Mode
spi_master_write_command(dev, 0x00);
// Set Higher Column Start Address for Page Addressing Mode
spi_master_write_command(dev, 0x10);
spi_master_write_command(dev, OLED_CMD_SET_CHARGE_PUMP); // 8D
spi_master_write_command(dev, 0x14);
spi_master_write_command(dev, OLED_CMD_DEACTIVE_SCROLL); // 2E
spi_master_write_command(dev, OLED_CMD_DISPLAY_NORMAL); // A6
spi_master_write_command(dev, OLED_CMD_DISPLAY_ON); // AF
}
void spi_display_image(SSD1306_t * dev, int page, int seg, uint8_t * images, int width)
{
if (page >= dev->_pages) return;
if (seg >= dev->_width) return;
int _seg = seg + CONFIG_OFFSETX;
uint8_t columLow = _seg & 0x0F;
uint8_t columHigh = (_seg >> 4) & 0x0F;
int _page = page;
if (dev->_flip) {
_page = (dev->_pages - page) - 1;
}
// Set Lower Column Start Address for Page Addressing Mode
spi_master_write_command(dev, (0x00 + columLow));
// Set Higher Column Start Address for Page Addressing Mode
spi_master_write_command(dev, (0x10 + columHigh));
// Set Page Start Address for Page Addressing Mode
spi_master_write_command(dev, 0xB0 | _page);
spi_master_write_data(dev, images, width);
}
void spi_contrast(SSD1306_t * dev, int contrast) {
int _contrast = contrast;
if (contrast < 0x0) _contrast = 0;
if (contrast > 0xFF) _contrast = 0xFF;
spi_master_write_command(dev, OLED_CMD_SET_CONTRAST); // 81
spi_master_write_command(dev, _contrast);
}
void spi_hardware_scroll(SSD1306_t * dev, ssd1306_scroll_type_t scroll)
{
if (scroll == SCROLL_RIGHT) {
spi_master_write_command(dev, OLED_CMD_HORIZONTAL_RIGHT); // 26
spi_master_write_command(dev, 0x00); // Dummy byte
spi_master_write_command(dev, 0x00); // Define start page address
spi_master_write_command(dev, 0x07); // Frame frequency
spi_master_write_command(dev, 0x07); // Define end page address
spi_master_write_command(dev, 0x00); //
spi_master_write_command(dev, 0xFF); //
spi_master_write_command(dev, OLED_CMD_ACTIVE_SCROLL); // 2F
}
if (scroll == SCROLL_LEFT) {
spi_master_write_command(dev, OLED_CMD_HORIZONTAL_LEFT); // 27
spi_master_write_command(dev, 0x00); // Dummy byte
spi_master_write_command(dev, 0x00); // Define start page address
spi_master_write_command(dev, 0x07); // Frame frequency
spi_master_write_command(dev, 0x07); // Define end page address
spi_master_write_command(dev, 0x00); //
spi_master_write_command(dev, 0xFF); //
spi_master_write_command(dev, OLED_CMD_ACTIVE_SCROLL); // 2F
}
if (scroll == SCROLL_DOWN) {
spi_master_write_command(dev, OLED_CMD_CONTINUOUS_SCROLL); // 29
spi_master_write_command(dev, 0x00); // Dummy byte
spi_master_write_command(dev, 0x00); // Define start page address
spi_master_write_command(dev, 0x07); // Frame frequency
//spi_master_write_command(dev, 0x01); // Define end page address
spi_master_write_command(dev, 0x00); // Define end page address
spi_master_write_command(dev, 0x3F); // Vertical scrolling offset
spi_master_write_command(dev, OLED_CMD_VERTICAL); // A3
spi_master_write_command(dev, 0x00);
if (dev->_height == 64)
spi_master_write_command(dev, 0x40);
if (dev->_height == 32)
spi_master_write_command(dev, 0x20);
spi_master_write_command(dev, OLED_CMD_ACTIVE_SCROLL); // 2F
}
if (scroll == SCROLL_UP) {
spi_master_write_command(dev, OLED_CMD_CONTINUOUS_SCROLL); // 29
spi_master_write_command(dev, 0x00); // Dummy byte
spi_master_write_command(dev, 0x00); // Define start page address
spi_master_write_command(dev, 0x07); // Frame frequency
//spi_master_write_command(dev, 0x01); // Define end page address
spi_master_write_command(dev, 0x00); // Define end page address
spi_master_write_command(dev, 0x01); // Vertical scrolling offset
spi_master_write_command(dev, OLED_CMD_VERTICAL); // A3
spi_master_write_command(dev, 0x00);
if (dev->_height == 64)
spi_master_write_command(dev, 0x40);
if (dev->_height == 32)
spi_master_write_command(dev, 0x20);
spi_master_write_command(dev, OLED_CMD_ACTIVE_SCROLL); // 2F
}
if (scroll == SCROLL_STOP) {
spi_master_write_command(dev, OLED_CMD_DEACTIVE_SCROLL); // 2E
}
}

Binary file not shown.

BIN
doc/Sabertooth2x60.pdf Normal file

Binary file not shown.

BIN
doc/TCYS5201-Vishay.pdf Normal file

Binary file not shown.

BIN
doc/tcsy5201-pinout.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.