Add speedSensor class - functional

successfully read rotational speed and direction using encoder disk and
optical sensor
custom implementation of incremental encoder using gpio edge interrupt
This commit is contained in:
jonny_jr9 2023-09-06 21:15:44 +02:00
parent e3460a06ae
commit a3257e89ee
4 changed files with 265 additions and 11 deletions

View File

@ -7,6 +7,7 @@ idf_component_register(
"fan.cpp"
"currentsensor.cpp"
"uart.cpp"
"speedsensor.cpp"
INCLUDE_DIRS
"."
)

View File

@ -14,12 +14,20 @@ extern "C"
#include "driver/ledc.h"
//custom C files
//custom C files
#include "wifi.h"
}
//custom C++ files
#include "config.hpp"
#include "uart.hpp"
#include "speedsensor.hpp"
//============================
//======= TESTING MODE =======
//============================
//do not start the actual tasks for controlling the armchair
#define TESTING_MODE
//=========================
//======= UART TEST =======
@ -32,14 +40,18 @@ extern "C"
//======= BRAKE TEST =======
//==========================
//only run brake-test (ignore uart input)
#define BRAKE_TEST_ONLY
//#define BRAKE_TEST_ONLY
//====================-======
//==== SPEED SENSOR TEST ====
//======================-====
//only run speed-sensor test
#define SPEED_SENSOR_TEST
//tag for logging
static const char * TAG = "main";
#ifndef UART_TEST_ONLY
//====================================
//========== motorctl task ===========
//====================================
@ -110,22 +122,25 @@ void setLoglevels(void){
esp_log_level_set("uart_common", ESP_LOG_INFO);
esp_log_level_set("uart", ESP_LOG_INFO);
//esp_log_level_set("current-sensors", ESP_LOG_INFO);
esp_log_level_set("speedSensor", ESP_LOG_WARN);
}
#endif
//=================================
//=========== app_main ============
//=================================
extern "C" void app_main(void) {
#ifndef UART_TEST_ONLY
//---- define log levels ----
setLoglevels();
#ifndef TESTING_MODE
//enable 5V volate regulator
gpio_pad_select_gpio(GPIO_NUM_17);
gpio_set_direction(GPIO_NUM_17, GPIO_MODE_OUTPUT);
gpio_set_level(GPIO_NUM_17, 1);
//---- define log levels ----
setLoglevels();
//----------------------------------------------
//--- create task for controlling the motors ---
@ -152,20 +167,42 @@ extern "C" void app_main(void) {
#ifndef BRAKE_TEST_ONLY
//-------------------------------------------
//--- create tasks for uart communication ---
//-------------------------------------------
#ifndef BRAKE_TEST_ONLY
uart_init();
xTaskCreate(task_uartReceive, "task_uartReceive", 4096, NULL, 10, NULL);
xTaskCreate(task_uartSend, "task_uartSend", 4096, NULL, 10, NULL);
#endif
//--- main loop ---
#ifdef SPEED_SENSOR_TEST
speedSensor_config_t speedRight_config{
.gpioPin = GPIO_NUM_18,
.degreePerGroup = 72,
.tireCircumferenceMeter = 0.69,
.directionInverted = false,
.logName = "speedRight",
};
speedSensor speedRight (speedRight_config);
#endif
//---------------------------
//-------- main loop --------
//---------------------------
//does nothing except for testing things
while(1){
vTaskDelay(500 / portTICK_PERIOD_MS);
#ifdef SPEED_SENSOR_TEST
vTaskDelay(100 / portTICK_PERIOD_MS);
//speedRight.getRpm();
ESP_LOGI(TAG, "speedsensor-test: rpm=%fRPM, speed=%fkm/h dir=%d, pulseCount=%d, p1=%d, p2=%d, p3=%d lastEdgetime=%d", speedRight.getRpm(), speedRight.getKmph(), speedRight.direction, speedRight.pulseCounter, (int)speedRight.pulseDurations[0]/1000, (int)speedRight.pulseDurations[1]/1000, (int)speedRight.pulseDurations[2]/1000,(int)speedRight.lastEdgeTime);
#endif
#ifdef BRAKE_TEST_ONLY
//test relays at standstill
ESP_LOGW("brake-test", "test relays via motorctl");
@ -198,7 +235,6 @@ extern "C" void app_main(void) {
vTaskDelay(5000 / portTICK_PERIOD_MS);
//reset to idle
motorRight.setTarget(motorstate_t::IDLE, 0);
#endif

View File

@ -0,0 +1,164 @@
#include "speedsensor.hpp"
#include "esp_timer.h"
#include <ctime>
//===== config =====
#define TIMEOUT_NO_ROTATION 1000 //RPM set to 0 when no pulses within that time (ms)
static const char* TAG = "speedSensor";
uint32_t min(uint32_t a, uint32_t b){
if (a>b) return b;
else return a;
}
//=========================================
//========== ISR onEncoderChange ==========
//=========================================
//handle gpio edge event
//determines direction and rotational speed with a speedSensor object
void IRAM_ATTR onEncoderChange(void* arg) {
speedSensor* sensor = (speedSensor*)arg;
int currentState = gpio_get_level(sensor->config.gpioPin);
//detect rising edge LOW->HIGH (reached end of gap in encoder disk)
if (currentState == 1 && sensor->prevState == 0) {
//time since last edge in us
uint32_t currentTime = esp_timer_get_time();
uint32_t timeElapsed = currentTime - sensor->lastEdgeTime;
sensor->lastEdgeTime = currentTime; //update last edge time
//store duration of last pulse
sensor->pulseDurations[sensor->pulseCounter] = timeElapsed;
sensor->pulseCounter++;
//check if 3rd pulse has occoured
if (sensor->pulseCounter >= 3) {
sensor->pulseCounter = 0; //reset counter
//simplify variable names
uint32_t pulse1 = sensor->pulseDurations[0];
uint32_t pulse2 = sensor->pulseDurations[1];
uint32_t pulse3 = sensor->pulseDurations[2];
//find shortest pulse
uint32_t shortestPulse = min(pulse1, min(pulse2, pulse3));
//Determine direction based on pulse order
int directionNew = 0;
if (shortestPulse == pulse1) { //short-medium-long...
directionNew = 1; //fwd
} else if (shortestPulse == pulse3) { //long-medium-short...
directionNew = -1; //rev
} else if (shortestPulse == pulse2) {
if (pulse1 < pulse3){ //medium short long-medium-short long...
directionNew = -1; //rev
} else { //long short-medium-long short-medium-long...
directionNew = 1; //fwd
}
}
//save and invert direction if necessay
//TODO mutex?
if (sensor->config.directionInverted) sensor->direction = -directionNew;
else sensor->direction = directionNew;
//calculate rotational speed
uint64_t pulseSum = pulse1 + pulse2 + pulse3;
sensor->currentRpm = directionNew * (sensor->config.degreePerGroup / 360.0 * 60.0 / ((double)pulseSum / 1000000.0));
}
}
//store current pin state for next edge detection
sensor->prevState = currentState;
}
//============================
//======= constructor ========
//============================
speedSensor::speedSensor(speedSensor_config_t config_f){
//copy config
config = config_f;
//init gpio and ISR
init();
}
//==========================
//========== init ==========
//==========================
//initializes gpio pin and configures interrupt
void speedSensor::init() {
//configure pin
gpio_pad_select_gpio(config.gpioPin);
gpio_set_direction(config.gpioPin, GPIO_MODE_INPUT);
gpio_set_pull_mode(config.gpioPin, GPIO_PULLUP_ONLY);
ESP_LOGW(TAG, "%s, configured gpio-pin %d", config.logName, (int)config.gpioPin);
//configure interrupt
gpio_set_intr_type(config.gpioPin, GPIO_INTR_ANYEDGE);
gpio_install_isr_service(0);
gpio_isr_handler_add(config.gpioPin, onEncoderChange, this);
ESP_LOGW(TAG, "%s, configured interrupt", config.logName);
}
//==========================
//========= getRpm =========
//==========================
//get rotational speed in revolutions per minute
float speedSensor::getRpm(){
uint32_t timeElapsed = esp_timer_get_time() - lastEdgeTime;
//timeout (standstill)
//TODO variable timeout considering config.degreePerGroup
if ((currentRpm != 0) && (esp_timer_get_time() - lastEdgeTime) > TIMEOUT_NO_ROTATION*1000){
ESP_LOGW(TAG, "%s - timeout: no pulse within %dms... last pulse was %dms ago => set RPM to 0",
config.logName, TIMEOUT_NO_ROTATION, timeElapsed/1000);
currentRpm = 0;
}
//debug output (also log variables when this function is called)
ESP_LOGI(TAG, "%s - getRpm: returning stored rpm=%.3f", config.logName, currentRpm);
ESP_LOGV(TAG, "%s - rpm=%f, dir=%d, pulseCount=%d, p1=%d, p2=%d, p3=%d lastEdgetime=%d",
config.logName,
currentRpm,
direction,
pulseCounter,
(int)pulseDurations[0]/1000,
(int)pulseDurations[1]/1000,
(int)pulseDurations[2]/1000,
(int)lastEdgeTime);
//return currently stored rpm
return currentRpm;
}
//==========================
//========= getKmph =========
//==========================
//get speed in kilometers per hour
float speedSensor::getKmph(){
float currentSpeed = getRpm() * config.tireCircumferenceMeter * 60/1000;
ESP_LOGI(TAG, "%s - getKmph: returning speed=%.3fkm/h", config.logName, currentSpeed);
return currentSpeed;
}
//==========================
//========= getMps =========
//==========================
//get speed in meters per second
float speedSensor::getMps(){
float currentSpeed = getRpm() * config.tireCircumferenceMeter;
ESP_LOGI(TAG, "%s - getMps: returning speed=%.3fm/s", config.logName, currentSpeed);
return currentSpeed;
}

View File

@ -0,0 +1,53 @@
#pragma once
extern "C" {
#include "esp_log.h"
#include "hal/gpio_types.h"
#include "driver/gpio.h"
#include "esp_timer.h"
}
//Encoder disk requirements:
//encoder disk has to have gaps in 3 differnt intervals (short, medium, long)
//that pattern can be repeated multiple times, see config option
typedef struct {
gpio_num_t gpioPin;
float degreePerGroup; //360 / [count of short,medium,long groups on encoder disk]
float tireCircumferenceMeter;
//positive direction is pulse order "short, medium, long"
bool directionInverted;
char* logName;
} speedSensor_config_t;
class speedSensor {
//TODO add count of revolutions/pulses if needed? (get(), reset() etc)
public:
//constructor
speedSensor(speedSensor_config_t config);
//initializes gpio pin and configures interrupt
void init();
//negative values = reverse direction
//positive values = forward direction
float getKmph(); //kilometers per hour
float getMps(); //meters per second
float getRpm(); //rotations per minute
//1=forward, -1=reverse
int direction;
//variables for handling the encoder
speedSensor_config_t config;
int prevState = 0;
uint64_t pulseDurations[3] = {};
uint64_t lastEdgeTime = 0;
uint8_t pulseCounter = 0;
int debugCount = 0;
double currentRpm = 0;
private:
};