jonny_jr9 ee5bad53ee Revert to V2.0 single board (additional folder)
New controller will be run with single controller at first...
get single board version from V2.0 and create new folder
(two boards version is kept)
-> copied firmware from e6e586e5855d81ee726bb9a0fbe8ab12def5eeef
2023-09-07 12:17:33 +02:00

131 lines
4.5 KiB
C++

#pragma once
#include "motordrivers.hpp"
#include "motorctl.hpp"
#include "buzzer.hpp"
#include "http.hpp"
#include "auto.hpp"
//--------------------------------------------
//---- struct, enum, variable declarations ---
//--------------------------------------------
//enum that decides how the motors get controlled
enum class controlMode_t {IDLE, JOYSTICK, MASSAGE, HTTP, MQTT, BLUETOOTH, AUTO};
//string array representing the mode enum (for printing the state as string)
extern const char* controlModeStr[7];
//--- control_config_t ---
//struct with config parameters
typedef struct control_config_t {
controlMode_t defaultMode; //default mode after startup and toggling IDLE
//timeout options
uint32_t timeoutMs; //time of inactivity after which the mode gets switched to IDLE
float timeoutTolerancePer; //percentage the duty can vary between timeout checks considered still inactive
} control_config_t;
//==================================
//========= control class ==========
//==================================
//controls the mode the armchair operates
//repeatedly generates the motor commands corresponding to current mode and sends those to motorcontrol
class controlledArmchair {
public:
//--- constructor ---
controlledArmchair (
control_config_t config_f,
buzzer_t* buzzer_f,
controlledMotor* motorLeft_f,
controlledMotor* motorRight_f,
evaluatedJoystick* joystick_f,
httpJoystick* httpJoystick_f
);
//--- functions ---
//task that repeatedly generates motor commands depending on the current mode
void startHandleLoop();
//function that changes to a specified control mode
void changeMode(controlMode_t modeNew);
//function that toggle between IDLE and previous active mode (or default if not switched to certain mode yet)
void toggleIdle();
//function that toggles between two modes, but prefers first argument if entirely different mode is currently active
void toggleModes(controlMode_t modePrimary, controlMode_t modeSecondary);
//toggle between certain mode and previous mode
void toggleMode(controlMode_t modePrimary);
//function that restarts timer which initiates the automatic timeout (switch to IDLE) after certain time of inactivity
void resetTimeout();
//function for sending a button event (e.g. from button task at event) to control task
//TODO: use queue instead?
void sendButtonEvent(uint8_t count);
private:
//--- functions ---
//function that evaluates whether there is no activity/change on the motor duty for a certain time, if so a switch to IDLE is issued. - has to be run repeatedly in a slow interval
void handleTimeout();
//--- objects ---
buzzer_t* buzzer;
controlledMotor* motorLeft;
controlledMotor* motorRight;
httpJoystick* httpJoystickMain_l;
evaluatedJoystick* joystick_l;
//---variables ---
//struct for motor commands returned by generate functions of each mode
motorCommands_t commands;
//struct with config parameters
control_config_t config;
//store joystick data
joystickData_t stickData;
bool altStickMapping; //alternative joystick mapping (reverse mapped differently)
//variables for http mode
uint32_t http_timestamp_lastData = 0;
//variables for MASSAGE mode
bool freezeInput = false;
//variables for AUTO mode
auto_instruction_t instruction = auto_instruction_t::NONE; //variable to receive instructions from automatedArmchair
//variable to store button event
uint8_t buttonCount = 0;
//definition of mode enum
controlMode_t mode = controlMode_t::IDLE;
//variable to store mode when toggling IDLE mode
controlMode_t modePrevious; //default mode
//command preset for idling motors
const motorCommand_t cmd_motorIdle = {
.state = motorstate_t::IDLE,
.duty = 0
};
const motorCommands_t cmds_bothMotorsIdle = {
.left = cmd_motorIdle,
.right = cmd_motorIdle
};
//variable for slow loop
uint32_t timestamp_SlowLoopLastRun = 0;
//variables for detecting timeout (switch to idle, after inactivity)
float dutyLeft_lastActivity = 0;
float dutyRight_lastActivity = 0;
uint32_t timestamp_lastActivity = 0;
};