armchair_fw/board_single/main/motordrivers.cpp
jonny_jr9 ee5bad53ee Revert to V2.0 single board (additional folder)
New controller will be run with single controller at first...
get single board version from V2.0 and create new folder
(two boards version is kept)
-> copied firmware from e6e586e5855d81ee726bb9a0fbe8ab12def5eeef
2023-09-07 12:17:33 +02:00

130 lines
5.3 KiB
C++

#include "motordrivers.hpp"
//TODO: move from ledc to mcpwm?
//https://docs.espressif.com/projects/esp-idf/en/v4.3/esp32/api-reference/peripherals/mcpwm.html#
//https://github.com/espressif/esp-idf/tree/v4.3/examples/peripherals/mcpwm/mcpwm_basic_config
//Note fade functionality provided by LEDC would be very useful but unfortunately is not usable here because:
//"Due to hardware limitations, there is no way to stop a fade before it reaches its target duty."
//definition of string array to be able to convert state enum to readable string
const char* motorstateStr[4] = {"IDLE", "FWD", "REV", "BRAKE"};
//tag for logging
static const char * TAG = "motordriver";
//====================================
//===== single100a motor driver ======
//====================================
//-----------------------------
//-------- constructor --------
//-----------------------------
//copy provided struct with all configuration and run init function
single100a::single100a(single100a_config_t config_f){
config = config_f;
init();
}
//----------------------------
//---------- init ------------
//----------------------------
//function to initialize pwm output, gpio pins and calculate maxDuty
void single100a::init(){
//--- configure ledc timer ---
ledc_timer_config_t ledc_timer;
ledc_timer.speed_mode = LEDC_HIGH_SPEED_MODE;
ledc_timer.timer_num = config.ledc_timer;
ledc_timer.duty_resolution = config.resolution; //13bit gives max 5khz freq
ledc_timer.freq_hz = config.pwmFreq;
ledc_timer.clk_cfg = LEDC_AUTO_CLK;
//apply configuration
ledc_timer_config(&ledc_timer);
//--- configure ledc channel ---
ledc_channel_config_t ledc_channel;
ledc_channel.channel = config.ledc_channel;
ledc_channel.duty = 0;
ledc_channel.gpio_num = config.gpio_pwm;
ledc_channel.speed_mode = LEDC_HIGH_SPEED_MODE;
ledc_channel.hpoint = 0;
ledc_channel.timer_sel = config.ledc_timer;
ledc_channel.intr_type = LEDC_INTR_DISABLE;
ledc_channel.flags.output_invert = 0; //TODO: add config option to invert the pwm output?
//apply configuration
ledc_channel_config(&ledc_channel);
//--- define gpio pins as outputs ---
gpio_pad_select_gpio(config.gpio_a);
gpio_set_direction(config.gpio_a, GPIO_MODE_OUTPUT);
gpio_pad_select_gpio(config.gpio_b);
gpio_set_direction(config.gpio_b, GPIO_MODE_OUTPUT);
//--- calculate max duty according to selected resolution ---
dutyMax = pow(2, ledc_timer.duty_resolution) -1;
ESP_LOGI(TAG, "initialized single100a driver");
ESP_LOGI(TAG, "resolution=%dbit, dutyMax value=%d, resolution=%.4f %%", ledc_timer.duty_resolution, dutyMax, 100/(float)dutyMax);
}
//---------------------------
//----------- set -----------
//---------------------------
//function to put the h-bridge module in the desired state and duty cycle
void single100a::set(motorstate_t state_f, float duty_f){
//scale provided target duty in percent to available resolution for ledc
uint32_t dutyScaled;
if (duty_f > 100) { //target duty above 100%
dutyScaled = dutyMax;
} else if (duty_f <= 0) { //target at or below 0%
state_f = motorstate_t::IDLE;
dutyScaled = 0;
} else { //target duty 0-100%
//scale duty to available resolution
dutyScaled = duty_f / 100 * dutyMax;
}
//put the single100a h-bridge module in the desired state update duty-cycle
switch (state_f){
case motorstate_t::IDLE:
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, dutyScaled);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
//TODO: to fix bugged state of h-bridge module when idle and start again, maybe try to leave pwm signal on for some time before updating a/b pins?
//no brake: (freewheel)
//gpio_set_level(config.gpio_a, config.aEnabledPinState);
//gpio_set_level(config.gpio_b, !config.bEnabledPinState);
gpio_set_level(config.gpio_a, config.aEnabledPinState);
gpio_set_level(config.gpio_b, config.bEnabledPinState);
break;
case motorstate_t::BRAKE:
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, 0);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
//brake:
gpio_set_level(config.gpio_a, !config.aEnabledPinState);
gpio_set_level(config.gpio_b, !config.bEnabledPinState);
break;
case motorstate_t::FWD:
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, dutyScaled);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
//forward:
gpio_set_level(config.gpio_a, config.aEnabledPinState);
gpio_set_level(config.gpio_b, !config.bEnabledPinState);
break;
case motorstate_t::REV:
ledc_set_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel, dutyScaled);
ledc_update_duty(LEDC_HIGH_SPEED_MODE, config.ledc_channel);
//reverse:
gpio_set_level(config.gpio_a, !config.aEnabledPinState);
gpio_set_level(config.gpio_b, config.bEnabledPinState);
break;
}
ESP_LOGD(TAG, "set module to state=%s, duty=%d/%d, duty_input=%.3f%%", motorstateStr[(int)state_f], dutyScaled, dutyMax, duty_f);
}