Stepper driver from scratch, test with buttons - WIP
- Add stepper driver code from scratch - Remove / comment out code that used DendoStepper library - Test custom driver with buttons (guide-stepper.cpp) untested limited features
This commit is contained in:
parent
a0032ea07f
commit
1d53d3467c
@ -8,6 +8,7 @@ idf_component_register(
|
||||
"display.cpp"
|
||||
"cutter.cpp"
|
||||
"switchesAnalog.cpp"
|
||||
"stepper.cpp"
|
||||
"guide-stepper.cpp"
|
||||
"encoder.cpp"
|
||||
INCLUDE_DIRS
|
||||
|
@ -85,7 +85,7 @@ extern "C" {
|
||||
//----- stepper config -----
|
||||
//--------------------------
|
||||
//enable stepper test mode (dont start control and encoder task)
|
||||
//#define STEPPER_TEST
|
||||
#define STEPPER_TEST
|
||||
#define STEPPER_STEP_PIN GPIO_NUM_18 //mos1
|
||||
#define STEPPER_DIR_PIN GPIO_NUM_16 //ST3
|
||||
#define STEPPER_EN_PIN GPIO_NUM_0 //not connected (-> stepper always on)
|
||||
|
@ -7,7 +7,7 @@ extern "C"
|
||||
#include "driver/adc.h"
|
||||
}
|
||||
|
||||
#include "DendoStepper.h"
|
||||
#include "stepper.hpp"
|
||||
#include "config.hpp"
|
||||
#include "guide-stepper.hpp"
|
||||
#include "encoder.hpp"
|
||||
@ -46,7 +46,6 @@ extern "C"
|
||||
//----------------------
|
||||
//----- variables ------
|
||||
//----------------------
|
||||
static DendoStepper step;
|
||||
static const char *TAG = "stepper"; //tag for logging
|
||||
|
||||
static bool stepp_direction = true;
|
||||
@ -57,96 +56,98 @@ static uint32_t posNow = 0;
|
||||
//----------------------
|
||||
//----- functions ------
|
||||
//----------------------
|
||||
//move axis certain Steps (relative) between left and right or reverse when negative
|
||||
void travelSteps(int stepsTarget){
|
||||
//posNow = step.getPositionMm(); //not otherwise controlled, so no update necessary
|
||||
int stepsToGo, remaining;
|
||||
|
||||
stepsToGo = abs(stepsTarget);
|
||||
if(stepsTarget < 0) stepp_direction = !stepp_direction; //invert direction in reverse mode
|
||||
|
||||
while (stepsToGo != 0){
|
||||
//--- currently moving right ---
|
||||
if (stepp_direction == true){ //currently moving right
|
||||
remaining = POS_MAX_STEPS - posNow; //calc remaining distance fom current position to limit
|
||||
if (stepsToGo > remaining){ //new distance will exceed limit
|
||||
step.runAbs (POS_MAX_STEPS); //move to limit
|
||||
while(step.getState() != 1) vTaskDelay(1); //wait for move to finish
|
||||
posNow = POS_MAX_STEPS;
|
||||
stepp_direction = false; //change current direction for next iteration
|
||||
stepsToGo = stepsToGo - remaining; //decrease target length by already traveled distance
|
||||
ESP_LOGI(TAG, " --- moved to max -> change direction (L) --- \n ");
|
||||
}
|
||||
else { //target distance does not reach the limit
|
||||
step.runAbs (posNow + stepsToGo); //move by (remaining) distance to reach target length
|
||||
while(step.getState() != 1) vTaskDelay(1); //wait for move to finish
|
||||
ESP_LOGD(TAG, "moving to %d\n", posNow+stepsToGo);
|
||||
posNow += stepsToGo;
|
||||
stepsToGo = 0; //finished, reset target length (could as well exit loop/break)
|
||||
}
|
||||
}
|
||||
|
||||
//--- currently moving left ---
|
||||
else {
|
||||
remaining = posNow - POS_MIN_STEPS;
|
||||
if (stepsToGo > remaining){
|
||||
step.runAbs (POS_MIN_STEPS);
|
||||
while(step.getState() != 1) vTaskDelay(2); //wait for move to finish
|
||||
posNow = POS_MIN_STEPS;
|
||||
stepp_direction = true;
|
||||
stepsToGo = stepsToGo - remaining;
|
||||
ESP_LOGI(TAG, " --- moved to min -> change direction (R) --- \n ");
|
||||
}
|
||||
else {
|
||||
step.runAbs (posNow - stepsToGo); //when moving left the coordinate has to be decreased
|
||||
while(step.getState() != 1) vTaskDelay(2); //wait for move to finish
|
||||
ESP_LOGD(TAG, "moving to %d\n", posNow - stepsToGo);
|
||||
posNow -= stepsToGo;
|
||||
stepsToGo = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(stepsTarget < 0) stepp_direction = !stepp_direction; //undo inversion of stepp_direction after reverse mode is finished
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
//move axis certain Mm (relative) between left and right or reverse when negative
|
||||
void travelMm(int length){
|
||||
travelSteps(length * STEPPER_STEPS_PER_MM);
|
||||
}
|
||||
|
||||
|
||||
//define zero/start position
|
||||
//currently crashes into hardware limitation for certain time
|
||||
//TODO: limit switch
|
||||
void home() {
|
||||
ESP_LOGW(TAG, "auto-home...");
|
||||
step.setSpeedMm(100, 500, 10);
|
||||
step.runInf(1);
|
||||
vTaskDelay(1500 / portTICK_PERIOD_MS);
|
||||
step.stop();
|
||||
step.resetAbsolute();
|
||||
ESP_LOGW(TAG, "auto-home finished");
|
||||
}
|
||||
////move axis certain Steps (relative) between left and right or reverse when negative
|
||||
//void travelSteps(int stepsTarget){
|
||||
// //posNow = step.getPositionMm(); //not otherwise controlled, so no update necessary
|
||||
// int stepsToGo, remaining;
|
||||
//
|
||||
// stepsToGo = abs(stepsTarget);
|
||||
// if(stepsTarget < 0) stepp_direction = !stepp_direction; //invert direction in reverse mode
|
||||
//
|
||||
// while (stepsToGo != 0){
|
||||
// //--- currently moving right ---
|
||||
// if (stepp_direction == true){ //currently moving right
|
||||
// remaining = POS_MAX_STEPS - posNow; //calc remaining distance fom current position to limit
|
||||
// if (stepsToGo > remaining){ //new distance will exceed limit
|
||||
// //....step.runAbs (POS_MAX_STEPS); //move to limit
|
||||
// //....while(step.getState() != 1) vTaskDelay(1); //wait for move to finish
|
||||
// posNow = POS_MAX_STEPS;
|
||||
// stepp_direction = false; //change current direction for next iteration
|
||||
// stepsToGo = stepsToGo - remaining; //decrease target length by already traveled distance
|
||||
// ESP_LOGI(TAG, " --- moved to max -> change direction (L) --- \n ");
|
||||
// }
|
||||
// else { //target distance does not reach the limit
|
||||
// //....step.runAbs (posNow + stepsToGo); //move by (remaining) distance to reach target length
|
||||
// //....while(step.getState() != 1) vTaskDelay(1); //wait for move to finish
|
||||
// ESP_LOGD(TAG, "moving to %d\n", posNow+stepsToGo);
|
||||
// posNow += stepsToGo;
|
||||
// stepsToGo = 0; //finished, reset target length (could as well exit loop/break)
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// //--- currently moving left ---
|
||||
// else {
|
||||
// remaining = posNow - POS_MIN_STEPS;
|
||||
// if (stepsToGo > remaining){
|
||||
// //....step.runAbs (POS_MIN_STEPS);
|
||||
// //....while(step.getState() != 1) vTaskDelay(2); //wait for move to finish
|
||||
// posNow = POS_MIN_STEPS;
|
||||
// stepp_direction = true;
|
||||
// stepsToGo = stepsToGo - remaining;
|
||||
// ESP_LOGI(TAG, " --- moved to min -> change direction (R) --- \n ");
|
||||
// }
|
||||
// else {
|
||||
// //....step.runAbs (posNow - stepsToGo); //when moving left the coordinate has to be decreased
|
||||
// while(step.getState() != 1) vTaskDelay(2); //wait for move to finish
|
||||
// ESP_LOGD(TAG, "moving to %d\n", posNow - stepsToGo);
|
||||
// posNow -= stepsToGo;
|
||||
// stepsToGo = 0;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// if(stepsTarget < 0) stepp_direction = !stepp_direction; //undo inversion of stepp_direction after reverse mode is finished
|
||||
// return;
|
||||
//}
|
||||
//
|
||||
//
|
||||
////move axis certain Mm (relative) between left and right or reverse when negative
|
||||
//void travelMm(int length){
|
||||
// travelSteps(length * STEPPER_STEPS_PER_MM);
|
||||
//}
|
||||
//
|
||||
//
|
||||
////define zero/start position
|
||||
////currently crashes into hardware limitation for certain time
|
||||
////TODO: limit switch
|
||||
//void home() {
|
||||
// ESP_LOGW(TAG, "auto-home...");
|
||||
// //....step.setSpeedMm(100, 500, 10);
|
||||
// //....step.runInf(1);
|
||||
// vTaskDelay(1500 / portTICK_PERIOD_MS);
|
||||
// //....step.stop();
|
||||
// //....step.resetAbsolute();
|
||||
// ESP_LOGW(TAG, "auto-home finished");
|
||||
//}
|
||||
|
||||
|
||||
//initialize/configure stepper instance
|
||||
void init_stepper() {
|
||||
ESP_LOGW(TAG, "initializing stepper...");
|
||||
DendoStepper_config_t step_cfg = {
|
||||
.stepPin = STEPPER_STEP_PIN,
|
||||
.dirPin = STEPPER_DIR_PIN,
|
||||
.enPin = STEPPER_EN_PIN,
|
||||
.timer_group = TIMER_GROUP_0,
|
||||
.timer_idx = TIMER_0,
|
||||
.miStep = MICROSTEP_32,
|
||||
.stepAngle = 1.8};
|
||||
step.config(&step_cfg);
|
||||
step.init();
|
||||
// ESP_LOGW(TAG, "initializing stepper...");
|
||||
// DendoStepper_config_t step_cfg = {
|
||||
// .stepPin = STEPPER_STEP_PIN,
|
||||
// .dirPin = STEPPER_DIR_PIN,
|
||||
// .enPin = STEPPER_EN_PIN,
|
||||
// .timer_group = TIMER_GROUP_0,
|
||||
// .timer_idx = TIMER_0,
|
||||
// .miStep = MICROSTEP_32,
|
||||
// .stepAngle = 1.8};
|
||||
// //....step.config(&step_cfg);
|
||||
// //....step.init();
|
||||
//
|
||||
// //....step.setSpeed(1000, 1000, 1000); //random default speed
|
||||
// //....step.setStepsPerMm(STEPPER_STEPS_PER_MM); //guide: 4mm/rot
|
||||
|
||||
step.setSpeed(1000, 1000, 1000); //random default speed
|
||||
step.setStepsPerMm(STEPPER_STEPS_PER_MM); //guide: 4mm/rot
|
||||
stepper_init();
|
||||
}
|
||||
|
||||
|
||||
@ -155,7 +156,7 @@ void updateSpeedFromAdc() {
|
||||
int potiRead = gpio_readAdc(ADC_CHANNEL_POTI); //0-4095 GPIO34
|
||||
double poti = potiRead/4095.0;
|
||||
int speed = poti*(SPEED_MAX-SPEED_MIN) + SPEED_MIN;
|
||||
step.setSpeedMm(speed, ACCEL_MS, DECEL_MS);
|
||||
//....step.setSpeedMm(speed, ACCEL_MS, DECEL_MS);
|
||||
ESP_LOGW(TAG, "poti: %d (%.2lf%%), set speed to: %d", potiRead, poti*100, speed);
|
||||
}
|
||||
|
||||
@ -166,80 +167,99 @@ void updateSpeedFromAdc() {
|
||||
//----------------------------
|
||||
void task_stepper_test(void *pvParameter)
|
||||
{
|
||||
init_stepper();
|
||||
home();
|
||||
stepper_init();
|
||||
while(1){
|
||||
vTaskDelay(20 / portTICK_PERIOD_MS);
|
||||
|
||||
while (1) {
|
||||
updateSpeedFromAdc();
|
||||
step.runPosMm(STEPPER_TEST_TRAVEL);
|
||||
while(step.getState() != 1) vTaskDelay(2);
|
||||
ESP_LOGI(TAG, "finished moving right => moving left");
|
||||
//------ handle switches ------
|
||||
//run handle functions for all switches
|
||||
SW_START.handle();
|
||||
SW_RESET.handle();
|
||||
SW_SET.handle();
|
||||
SW_PRESET1.handle();
|
||||
SW_PRESET2.handle();
|
||||
SW_PRESET3.handle();
|
||||
SW_CUT.handle();
|
||||
SW_AUTO_CUT.handle();
|
||||
|
||||
updateSpeedFromAdc();
|
||||
step.runPosMm(-STEPPER_TEST_TRAVEL);
|
||||
while(step.getState() != 1) vTaskDelay(2); //1=idle
|
||||
ESP_LOGI(TAG, "finished moving left => moving right");
|
||||
}
|
||||
if (SW_RESET.risingEdge) {
|
||||
stepper_toggleDirection();
|
||||
buzzer.beep(1, 1000, 100);
|
||||
}
|
||||
if (SW_PRESET1.risingEdge) {
|
||||
buzzer.beep(2, 300, 100);
|
||||
stepper_setTargetSteps(100);
|
||||
}
|
||||
if (SW_PRESET2.risingEdge) {
|
||||
buzzer.beep(1, 500, 100);
|
||||
stepper_setTargetSteps(1000);
|
||||
}
|
||||
if (SW_PRESET3.risingEdge) {
|
||||
buzzer.beep(1, 100, 100);
|
||||
stepper_setTargetSteps(6000);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
//----------------------------
|
||||
//----- TASK stepper-ctl -----
|
||||
//----------------------------
|
||||
void task_stepper_ctl(void *pvParameter)
|
||||
{
|
||||
//variables
|
||||
int encStepsNow = 0; //get curret steps of encoder
|
||||
int encStepsPrev = 0; //steps at last check
|
||||
int encStepsDelta = 0; //steps changed since last iteration
|
||||
|
||||
double cableLen = 0;
|
||||
double travelStepsExact = 0; //steps axis has to travel
|
||||
double travelStepsPartial = 0;
|
||||
int travelStepsFull = 0;
|
||||
double travelMm = 0;
|
||||
double turns = 0;
|
||||
|
||||
float potiModifier;
|
||||
|
||||
init_stepper();
|
||||
home();
|
||||
|
||||
while(1){
|
||||
//get current length
|
||||
encStepsNow = encoder_getSteps();
|
||||
|
||||
//calculate change
|
||||
encStepsDelta = encStepsNow - encStepsPrev; //FIXME MAJOR BUG: when resetting encoder/length in control task, diff will be huge!
|
||||
|
||||
//read potentiometer and normalize (0-1) to get a variable for testing
|
||||
potiModifier = (float) gpio_readAdc(ADC_CHANNEL_POTI) / 4095; //0-4095 -> 0-1
|
||||
//ESP_LOGI(TAG, "current poti-modifier = %f", potiModifier);
|
||||
|
||||
//calculate steps to move
|
||||
cableLen = (double)encStepsDelta * 1000 / ENCODER_STEPS_PER_METER;
|
||||
turns = cableLen / (PI * D_REEL);
|
||||
travelMm = turns * D_CABLE;
|
||||
travelStepsExact = travelMm * STEPPER_STEPS_PER_MM + travelStepsPartial; //convert mm to steps and add not moved partial steps
|
||||
travelStepsPartial = 0;
|
||||
travelStepsFull = (int)travelStepsExact;
|
||||
|
||||
//move axis when ready to move at least 1 step
|
||||
if (abs(travelStepsFull) > 1){
|
||||
travelStepsPartial = fmod(travelStepsExact, 1); //save remaining partial steps to be added in the next iteration
|
||||
ESP_LOGD(TAG, "cablelen=%.2lf, turns=%.2lf, travelMm=%.3lf, travelStepsExact: %.3lf, travelStepsFull=%d, partialStep=%.3lf", cableLen, turns, travelMm, travelStepsExact, travelStepsFull, travelStepsPartial);
|
||||
ESP_LOGI(TAG, "MOVING %d steps", travelStepsFull);
|
||||
//TODO: calculate variable speed for smoother movement? for example intentionally lag behind and calculate speed according to buffered data
|
||||
step.setSpeedMm(35, 100, 50);
|
||||
//testing: get speed from poti
|
||||
//step.setSpeedMm(35, 1000*potiModifier+1, 1000*potiModifier+1);
|
||||
travelSteps(travelStepsExact);
|
||||
encStepsPrev = encStepsNow; //update previous length
|
||||
}
|
||||
else {
|
||||
//TODO use encoder queue to only run this check at encoder event?
|
||||
vTaskDelay(2);
|
||||
}
|
||||
}
|
||||
// //variables
|
||||
// int encStepsNow = 0; //get curret steps of encoder
|
||||
// int encStepsPrev = 0; //steps at last check
|
||||
// int encStepsDelta = 0; //steps changed since last iteration
|
||||
//
|
||||
// double cableLen = 0;
|
||||
// double travelStepsExact = 0; //steps axis has to travel
|
||||
// double travelStepsPartial = 0;
|
||||
// int travelStepsFull = 0;
|
||||
// double travelMm = 0;
|
||||
// double turns = 0;
|
||||
//
|
||||
// float potiModifier;
|
||||
//
|
||||
// init_stepper();
|
||||
// home();
|
||||
//
|
||||
// while(1){
|
||||
// //get current length
|
||||
// encStepsNow = encoder_getSteps();
|
||||
//
|
||||
// //calculate change
|
||||
// encStepsDelta = encStepsNow - encStepsPrev; //FIXME MAJOR BUG: when resetting encoder/length in control task, diff will be huge!
|
||||
//
|
||||
// //read potentiometer and normalize (0-1) to get a variable for testing
|
||||
// potiModifier = (float) gpio_readAdc(ADC_CHANNEL_POTI) / 4095; //0-4095 -> 0-1
|
||||
// //ESP_LOGI(TAG, "current poti-modifier = %f", potiModifier);
|
||||
//
|
||||
// //calculate steps to move
|
||||
// cableLen = (double)encStepsDelta * 1000 / ENCODER_STEPS_PER_METER;
|
||||
// turns = cableLen / (PI * D_REEL);
|
||||
// travelMm = turns * D_CABLE;
|
||||
// travelStepsExact = travelMm * STEPPER_STEPS_PER_MM + travelStepsPartial; //convert mm to steps and add not moved partial steps
|
||||
// travelStepsPartial = 0;
|
||||
// travelStepsFull = (int)travelStepsExact;
|
||||
//
|
||||
// //move axis when ready to move at least 1 step
|
||||
// if (abs(travelStepsFull) > 1){
|
||||
// travelStepsPartial = fmod(travelStepsExact, 1); //save remaining partial steps to be added in the next iteration
|
||||
// ESP_LOGD(TAG, "cablelen=%.2lf, turns=%.2lf, travelMm=%.3lf, travelStepsExact: %.3lf, travelStepsFull=%d, partialStep=%.3lf", cableLen, turns, travelMm, travelStepsExact, travelStepsFull, travelStepsPartial);
|
||||
// ESP_LOGI(TAG, "MOVING %d steps", travelStepsFull);
|
||||
// //TODO: calculate variable speed for smoother movement? for example intentionally lag behind and calculate speed according to buffered data
|
||||
// //....step.setSpeedMm(35, 100, 50);
|
||||
// //testing: get speed from poti
|
||||
// //step.setSpeedMm(35, 1000*potiModifier+1, 1000*potiModifier+1);
|
||||
// travelSteps(travelStepsExact);
|
||||
// encStepsPrev = encStepsNow; //update previous length
|
||||
// }
|
||||
// else {
|
||||
// //TODO use encoder queue to only run this check at encoder event?
|
||||
// vTaskDelay(2);
|
||||
// }
|
||||
// }
|
||||
}
|
||||
|
@ -97,12 +97,12 @@ extern "C" void app_main()
|
||||
//create task for controlling the machine
|
||||
xTaskCreate(task_control, "task_control", configMINIMAL_STACK_SIZE * 3, NULL, 5, NULL);
|
||||
|
||||
//create task for controlling the machine
|
||||
//create task for controlling the stepper
|
||||
xTaskCreate(task_stepper_ctl, "task_stepper_ctl", configMINIMAL_STACK_SIZE * 3, NULL, 5, NULL);
|
||||
#endif
|
||||
|
||||
//create task for handling the buzzer
|
||||
xTaskCreate(&task_buzzer, "task_buzzer", 2048, NULL, 2, NULL);
|
||||
#endif
|
||||
|
||||
//beep at startup
|
||||
buzzer.beep(3, 70, 50);
|
||||
|
163
main/stepper.cpp
Normal file
163
main/stepper.cpp
Normal file
@ -0,0 +1,163 @@
|
||||
//custom driver for stepper motor
|
||||
|
||||
#include "config.hpp"
|
||||
|
||||
|
||||
//config from config.hpp
|
||||
//#define STEPPER_STEP_PIN GPIO_NUM_18 //mos1
|
||||
//#define STEPPER_DIR_PIN GPIO_NUM_16 //ST3
|
||||
//
|
||||
|
||||
extern "C" {
|
||||
#include "driver/timer.h"
|
||||
#include "driver/gpio.h"
|
||||
}
|
||||
|
||||
#define TIMER_F 1000000ULL
|
||||
#define TICK_PER_S TIMER_S
|
||||
#define NS_TO_T_TICKS(x) (x)
|
||||
|
||||
static const char *TAG = "stepper-ctl"; //tag for logging
|
||||
bool direction = 0;
|
||||
|
||||
bool timer_isr(void *arg);
|
||||
|
||||
|
||||
typedef struct {
|
||||
int targetSteps; // Target step count
|
||||
int currentSteps; // Current step count
|
||||
int acceleration; // Acceleration (in steps per second^2)
|
||||
int deceleration; // Deceleration (in steps per second^2)
|
||||
gpio_num_t pulsePin; // Pin for pulse signal
|
||||
gpio_num_t directionPin; // Pin for direction signal
|
||||
timer_group_t timerGroup; // Timer group
|
||||
timer_idx_t timerIdx; // Timer index
|
||||
bool isAccelerating; // Flag to indicate if accelerating
|
||||
bool isDecelerating; // Flag to indicate if decelerating
|
||||
int initialSpeed; // Initial speed (in steps per second)
|
||||
int targetSpeed; // Target speed (in steps per second)
|
||||
int currentSpeed; // Current speed (in steps per second)
|
||||
} StepperControl;
|
||||
|
||||
StepperControl ctrl; // Create an instance of StepperControl struct
|
||||
|
||||
|
||||
|
||||
void stepper_setTargetSteps(int steps){
|
||||
ESP_LOGW(TAG, "set target steps to %d", steps);
|
||||
//TODO switch dir pin in isr? not in sync with count
|
||||
if(steps < 0){
|
||||
gpio_set_level(ctrl.directionPin, 1);
|
||||
} else {
|
||||
gpio_set_level(ctrl.directionPin, 0);
|
||||
}
|
||||
|
||||
ctrl.targetSteps = abs(steps);
|
||||
}
|
||||
|
||||
void stepper_toggleDirection(){
|
||||
direction = !direction;
|
||||
gpio_set_level(ctrl.directionPin, 1);
|
||||
ESP_LOGW(TAG, "toggle direction -> %d", direction);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void stepper_init(){
|
||||
ESP_LOGW(TAG, "init - configure struct...");
|
||||
// Set values in StepperControl struct
|
||||
ctrl.targetSteps = 0;
|
||||
ctrl.currentSteps = 0;
|
||||
ctrl.acceleration = 50;
|
||||
ctrl.deceleration = 50;
|
||||
ctrl.pulsePin = STEPPER_STEP_PIN;
|
||||
ctrl.directionPin = STEPPER_DIR_PIN;
|
||||
ctrl.timerGroup = TIMER_GROUP_0;
|
||||
ctrl.timerIdx = TIMER_0;
|
||||
ctrl.isAccelerating = true;
|
||||
ctrl.isDecelerating = false;
|
||||
ctrl.initialSpeed = 0; // Set initial speed as needed
|
||||
ctrl.targetSpeed = 500; // Set target speed as needed
|
||||
ctrl.currentSpeed = ctrl.initialSpeed;
|
||||
|
||||
// Configure pulse and direction pins as outputs
|
||||
ESP_LOGW(TAG, "init - configure gpio pins...");
|
||||
gpio_set_direction(ctrl.pulsePin, GPIO_MODE_OUTPUT);
|
||||
gpio_set_direction(ctrl.directionPin, GPIO_MODE_OUTPUT);
|
||||
|
||||
|
||||
ESP_LOGW(TAG, "init - initialize/configure timer...");
|
||||
timer_config_t timer_conf = {
|
||||
.alarm_en = TIMER_ALARM_EN, // we need alarm
|
||||
.counter_en = TIMER_PAUSE, // dont start now lol
|
||||
.intr_type = TIMER_INTR_LEVEL, // interrupt
|
||||
.counter_dir = TIMER_COUNT_UP, // count up duh
|
||||
.auto_reload = TIMER_AUTORELOAD_EN, // reload pls
|
||||
.divider = 80000000ULL / TIMER_F, // ns resolution
|
||||
};
|
||||
|
||||
|
||||
ESP_ERROR_CHECK(timer_init(ctrl.timerGroup, ctrl.timerIdx, &timer_conf)); // init the timer
|
||||
ESP_ERROR_CHECK(timer_set_counter_value(ctrl.timerGroup, ctrl.timerIdx, 0)); // set it to 0
|
||||
//ESP_ERROR_CHECK(timer_isr_callback_add(ctrl.timerGroup, ctrl.timerIdx, timer_isr, )); // add callback fn to run when alarm is triggrd
|
||||
ESP_ERROR_CHECK(timer_isr_callback_add(ctrl.timerGroup, ctrl.timerIdx, timer_isr, (void *)ctrl.timerIdx, 0));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
bool timer_isr(void *arg) {
|
||||
// Cast arg to an integer type that has the same size as timer_idx_t
|
||||
uintptr_t arg_val = (uintptr_t)arg;
|
||||
// Cast arg_val to timer_idx_t
|
||||
timer_idx_t timer_idx = (timer_idx_t)arg_val;
|
||||
int32_t step_diff = ctrl.targetSteps - ctrl.currentSteps;
|
||||
|
||||
if (timer_idx == ctrl.timerIdx) {
|
||||
if (ctrl.currentSteps < ctrl.targetSteps) {
|
||||
// Check if accelerating
|
||||
if (ctrl.isAccelerating) {
|
||||
if (ctrl.currentSpeed < ctrl.targetSpeed) {
|
||||
// Increase speed if not yet at target speed
|
||||
ctrl.currentSpeed += ctrl.acceleration;
|
||||
} else {
|
||||
// Reached target speed, clear accelerating flag
|
||||
ctrl.isAccelerating = false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if decelerating
|
||||
if (ctrl.isDecelerating) {
|
||||
if (ctrl.currentSpeed > ctrl.targetSpeed) {
|
||||
// Decrease speed if not yet at target speed
|
||||
ctrl.currentSpeed -= ctrl.deceleration;
|
||||
} else {
|
||||
// Reached target speed, clear decelerating flag
|
||||
ctrl.isDecelerating = false;
|
||||
}
|
||||
}
|
||||
|
||||
// Generate pulse for stepper motor
|
||||
gpio_set_level(ctrl.pulsePin, 1);
|
||||
ets_delay_us(500); // Adjust delay as needed
|
||||
gpio_set_level(ctrl.pulsePin, 0);
|
||||
|
||||
// Update current step count
|
||||
ctrl.currentSteps++;
|
||||
|
||||
// Update timer period based on current speed
|
||||
timer_set_alarm_value(ctrl.timerGroup, ctrl.timerIdx, TIMER_BASE_CLK / ctrl.currentSpeed);
|
||||
} else {
|
||||
// Reached target step count, stop timer
|
||||
timer_pause(ctrl.timerGroup, ctrl.timerIdx);
|
||||
ESP_LOGW(TAG,"finished, pausing timer");
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
40
main/stepper.hpp
Normal file
40
main/stepper.hpp
Normal file
@ -0,0 +1,40 @@
|
||||
|
||||
|
||||
void stepper_init();
|
||||
|
||||
void stepper_setTargetSteps(int steps);
|
||||
|
||||
void stepper_toggleDirection();
|
||||
|
||||
//typedef struct
|
||||
//{
|
||||
// uint8_t stepPin; /** step signal pin */
|
||||
// uint8_t dirPin; /** dir signal pin */
|
||||
// timer_group_t timer_group; /** timer group, useful if we are controlling more than 2 steppers */
|
||||
// timer_idx_t timer_idx; /** timer index, useful if we are controlling 2steppers */
|
||||
// float stepAngle; /** one step angle in degrees (usually 1.8deg), used in steps per rotation calculation */
|
||||
//} stepper_config_t;
|
||||
//
|
||||
//typedef struct
|
||||
//{
|
||||
// uint32_t stepInterval = 40000; // step interval in ns/25
|
||||
// double targetSpeed = 0; // target speed in steps/s
|
||||
// double currentSpeed = 0;
|
||||
// double accInc = 0;
|
||||
// double decInc = 0;
|
||||
// uint32_t stepCnt = 0; // step counter
|
||||
// uint32_t accEnd; // when to end acc and start coast
|
||||
// uint32_t coastEnd; // when to end coast and start decel
|
||||
// uint32_t stepsToGo = 0; // steps we need to take
|
||||
// float speed = 100; // speed in rad/s
|
||||
// float acc = 100; // acceleration in rad*second^-2
|
||||
// float dec = 100; // decceleration in rad*second^-2
|
||||
// uint32_t accSteps = 0;
|
||||
// uint32_t decSteps = 0;
|
||||
// uint8_t status = DISABLED;
|
||||
// bool dir = CW;
|
||||
// bool runInfinite = false;
|
||||
// uint16_t stepsPerRot; // steps per one revolution, 360/stepAngle * microstep
|
||||
// uint16_t stepsPerMm = 0; /** Steps per one milimiter, if the motor is performing linear movement */
|
||||
//} ctrl_var_t;
|
||||
|
Loading…
x
Reference in New Issue
Block a user