Add rotary encoder test

for testing the rotary encoder the count is displayed on the 7 segment display
(1 rotation = 600)
This commit is contained in:
jonny_ji7 2022-08-07 08:55:44 +02:00
parent 307cad4a9a
commit f7b9309819

View File

@ -2,25 +2,66 @@
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <esp_idf_version.h>
#include "freertos/queue.h"
#include "esp_system.h"
#include "esp_log.h"
#include <max7219.h>
#include "rotary_encoder.h"
#ifndef APP_CPU_NUM
#define APP_CPU_NUM PRO_CPU_NUM
#endif
//--------------------------
//----- display config -----
//--------------------------
#if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(4, 0, 0)
#define HOST HSPI_HOST
#else
#define HOST SPI2_HOST
#endif
#define DISPLAY_PIN_NUM_MOSI 23
#define DISPLAY_PIN_NUM_CLK 18
#define DISPLAY_PIN_NUM_CS 21
#define DISPLAY_DELAY 2000
//--------------------------
//----- encoder config -----
//--------------------------
#define TAG "app"
#define ROT_ENC_A_GPIO 16
#define ROT_ENC_B_GPIO 17
#define ENABLE_HALF_STEPS false // Set to true to enable tracking of rotary encoder at half step resolution
#define FLIP_DIRECTION false // Set to true to reverse the clockwise/counterclockwise sense
void task(void *pvParameter)
{
//========================
//===== init encoder =====
//========================
// esp32-rotary-encoder requires that the GPIO ISR service is installed before calling rotary_encoder_register()
ESP_ERROR_CHECK(gpio_install_isr_service(0));
// Initialise the rotary encoder device with the GPIOs for A and B signals
rotary_encoder_info_t info = { 0 };
ESP_ERROR_CHECK(rotary_encoder_init(&info, ROT_ENC_A_GPIO, ROT_ENC_B_GPIO));
ESP_ERROR_CHECK(rotary_encoder_enable_half_steps(&info, ENABLE_HALF_STEPS));
#ifdef FLIP_DIRECTION
ESP_ERROR_CHECK(rotary_encoder_flip_direction(&info));
#endif
// Create a queue for events from the rotary encoder driver.
// Tasks can read from this queue to receive up to date position information.
QueueHandle_t event_queue = rotary_encoder_create_queue();
ESP_ERROR_CHECK(rotary_encoder_set_queue(&info, event_queue));
//========================
//===== init display =====
//========================
// Configure SPI bus
spi_bus_config_t cfg = {
.mosi_io_num = DISPLAY_PIN_NUM_MOSI,
@ -41,14 +82,60 @@ void task(void *pvParameter)
};
ESP_ERROR_CHECK(max7219_init_desc(&dev, HOST, MAX7219_MAX_CLOCK_SPEED_HZ, DISPLAY_PIN_NUM_CS));
char buf[10]; // 8 digits + decimal point + \0
ESP_ERROR_CHECK(max7219_init(&dev));
float count = 0;
while (1)
{
char buf[10]; // 8 digits + decimal point + \0
//display startup message
max7219_clear(&dev);
max7219_draw_text_7seg(&dev, 0, "ABCDEFGH");
printf("showing startup message...");
vTaskDelay(pdMS_TO_TICKS(1000));
//===== loop =====
while (1)
{
vTaskDelay(pdMS_TO_TICKS(10)); //limit processing of events
// Wait for incoming events on the event queue.
rotary_encoder_event_t event = { 0 };
if (xQueueReceive(event_queue, &event, 1000 / portTICK_PERIOD_MS) == pdTRUE)
{
ESP_LOGI(TAG, "Event: position %d, direction %s", event.state.position,
event.state.direction ? (event.state.direction == ROTARY_ENCODER_DIRECTION_CLOCKWISE ? "CW" : "CCW") : "NOT_SET");
//--- show current position on display ---
sprintf(buf, "%08d", event.state.position);
//printf("float num\n");
max7219_clear(&dev);
max7219_draw_text_7seg(&dev, 0, buf);
}
else //no event for 1s
{
// Poll current position and direction
rotary_encoder_state_t state = { 0 };
ESP_ERROR_CHECK(rotary_encoder_get_state(&info, &state));
ESP_LOGI(TAG, "Poll: position %d, direction %s", state.position,
state.direction ? (state.direction == ROTARY_ENCODER_DIRECTION_CLOCKWISE ? "CW" : "CCW") : "NOT_SET");
}
}
}
//display test
//float count = 0;
// printf("Display cycle\n");
//
// max7219_clear(&dev);
@ -61,30 +148,32 @@ void task(void *pvParameter)
// printf("text");
// vTaskDelay(pdMS_TO_TICKS(DISPLAY_DELAY));
//
if (count > 20){
count = 0;
} else {
count += 0.005;
}
sprintf(buf, "%06.3f m", count);
//printf("float num\n");
max7219_clear(&dev);
max7219_draw_text_7seg(&dev, 0, buf);
vTaskDelay(pdMS_TO_TICKS(10));
//
// if (count > 20){
// count = 0;
// } else {
// count += 0.005;
// }
//
// sprintf(buf, "%06.3f m", count);
// //printf("float num\n");
// max7219_clear(&dev);
// max7219_draw_text_7seg(&dev, 0, buf);
// vTaskDelay(pdMS_TO_TICKS(10));
//
// max7219_clear(&dev);
// sprintf(buf, "%08x", 12345678);
// printf("num\n");
// max7219_draw_text_7seg(&dev, 0, buf);
// vTaskDelay(pdMS_TO_TICKS(DISPLAY_DELAY));
}
}
// }
//}
void app_main()
{
xTaskCreatePinnedToCore(task, "task", configMINIMAL_STACK_SIZE * 3, NULL, 5, NULL, APP_CPU_NUM);
xTaskCreate(task, "task", configMINIMAL_STACK_SIZE * 3, NULL, 5, NULL);
}