GUI: Optimize performance, Layout, Add "EXIT" tab
This commit is contained in:
parent
bb84205531
commit
7d83e354fa
@ -1,7 +1,9 @@
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import tkinter as tk
|
||||
from tkinter import ttk
|
||||
from tkinter import messagebox
|
||||
import RPi.GPIO as GPIO
|
||||
|
||||
# Add the parent directory to the module search path
|
||||
@ -10,8 +12,12 @@ from interface_board_libs.adc_mcp3208 import MCP3208
|
||||
from interface_board_libs.shift_register import ShiftRegister
|
||||
from interface_board_pins import * # Import pin assignments
|
||||
from tab_control import create_control_tab
|
||||
from tab_control import set_updating_enabled as tab_control__set_updating_enabled
|
||||
from tab_adc_plot import create_adc_plot_tab
|
||||
from tab_adc_plot import set_updating_enabled as tab_analog_plot__set_updating_enabled
|
||||
from tab_digital_plot import create_digital_plot_tab
|
||||
from tab_digital_plot import set_updating_enabled as tab_digital_plot__set_updating_enabled
|
||||
from tab_exit import create_exit_tab
|
||||
|
||||
# Initialize ADC & Shift Register
|
||||
adc = MCP3208()
|
||||
@ -38,10 +44,33 @@ root.configure(bg="black")
|
||||
notebook = ttk.Notebook(root)
|
||||
notebook.pack(expand=True, fill="both")
|
||||
|
||||
# Track active tab
|
||||
def on_tab_change(event):
|
||||
active_tab = event.widget.tab(event.widget.index("current"), "text")
|
||||
print (f"INFO: switched to tab {active_tab}")
|
||||
match active_tab:
|
||||
case "ADC Plot":
|
||||
tab_control__set_updating_enabled(False)
|
||||
tab_analog_plot__set_updating_enabled(True)
|
||||
tab_digital_plot__set_updating_enabled(False)
|
||||
case "Digital Inputs":
|
||||
tab_control__set_updating_enabled(False)
|
||||
tab_analog_plot__set_updating_enabled(False)
|
||||
tab_digital_plot__set_updating_enabled(True)
|
||||
case "Controls":
|
||||
tab_control__set_updating_enabled(True)
|
||||
tab_analog_plot__set_updating_enabled(False)
|
||||
tab_digital_plot__set_updating_enabled(False)
|
||||
case _:
|
||||
print(f"unhandled change to tab {active_tab}")
|
||||
|
||||
notebook.bind("<<NotebookTabChanged>>", on_tab_change)
|
||||
|
||||
# Add tabs
|
||||
create_control_tab(notebook, adc, shift_reg, pwm1, pwm2)
|
||||
create_adc_plot_tab(notebook, adc)
|
||||
create_digital_plot_tab(notebook)
|
||||
create_exit_tab(notebook, root, pwm1, pwm2)
|
||||
|
||||
# Run GUI
|
||||
root.mainloop()
|
||||
|
@ -4,7 +4,14 @@ from matplotlib.figure import Figure
|
||||
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
|
||||
import time
|
||||
|
||||
ADC_PLOT_UPDATE_INTERVAL = 100
|
||||
ADC_PLOT_UPDATE_INTERVAL = 50 # 20 FPS, smooth and efficient
|
||||
NOT_ACTIVE_CHECK_INTERVAL = 2000
|
||||
MAX_HISTORY = 100
|
||||
|
||||
updating_enabled = False
|
||||
adc_channels = list(range(8))
|
||||
data = {ch: [0] * MAX_HISTORY for ch in adc_channels} # Preallocate lists
|
||||
time_data = list(range(-MAX_HISTORY, 0)) # Simulated time axis
|
||||
|
||||
def create_adc_plot_tab(notebook, adc):
|
||||
frame = ttk.Frame(notebook)
|
||||
@ -12,41 +19,34 @@ def create_adc_plot_tab(notebook, adc):
|
||||
|
||||
figure = Figure(figsize=(8, 5), dpi=100)
|
||||
ax = figure.add_subplot(1, 1, 1)
|
||||
ax.set_title("ADC Readings Over Time")
|
||||
ax.set_xlabel("Time (s)")
|
||||
ax.set_ylabel("Voltage (V)")
|
||||
ax.set_ylim(0, 12)
|
||||
|
||||
ax.set_xlim(-MAX_HISTORY, 0) # Keep time axis fixed
|
||||
canvas = FigureCanvasTkAgg(figure, master=frame)
|
||||
canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True)
|
||||
|
||||
adc_channels = list(range(8))
|
||||
data = {ch: [] for ch in adc_channels}
|
||||
time_data = []
|
||||
# Initialize lines for fast updates
|
||||
lines = {ch: ax.plot(time_data, data[ch], label=f"ADC {ch+1}")[0] for ch in adc_channels}
|
||||
|
||||
def update_plot():
|
||||
current_time = time.time()
|
||||
if len(time_data) > 50:
|
||||
if not updating_enabled:
|
||||
frame.after(NOT_ACTIVE_CHECK_INTERVAL, update_plot)
|
||||
return
|
||||
|
||||
# Shift existing data left
|
||||
for ch in adc_channels:
|
||||
data[ch].pop(0)
|
||||
time_data.pop(0)
|
||||
data[ch].append(round(adc.read(ch) * 12 / 4095, 2))
|
||||
|
||||
time_data.append(current_time)
|
||||
# Update only the y-data for efficiency
|
||||
for ch in adc_channels:
|
||||
voltage = round(adc.read(ch) * 12 / 4095, 2)
|
||||
data[ch].append(voltage)
|
||||
lines[ch].set_ydata(data[ch])
|
||||
|
||||
ax.clear()
|
||||
ax.set_title("ADC Readings Over Time")
|
||||
ax.set_xlabel("Time (s)")
|
||||
ax.set_ylabel("Voltage (V)")
|
||||
ax.set_ylim(0, 12)
|
||||
|
||||
for ch in adc_channels:
|
||||
ax.plot(time_data, data[ch], label=f"ADC {ch+1}")
|
||||
|
||||
ax.legend(loc="upper right")
|
||||
canvas.draw()
|
||||
canvas.draw_idle() # Efficient redraw
|
||||
frame.after(ADC_PLOT_UPDATE_INTERVAL, update_plot)
|
||||
|
||||
update_plot()
|
||||
|
||||
def set_updating_enabled(is_active):
|
||||
global updating_enabled
|
||||
updating_enabled = is_active
|
||||
print(f"adc_plot tab: set updating_enabled to {updating_enabled}")
|
||||
|
@ -8,6 +8,12 @@ import RPi.GPIO as GPIO
|
||||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
||||
from interface_board_pins import * # Import pin assignments
|
||||
|
||||
updating_enabled = False
|
||||
|
||||
ADC_VALUES_UPDATE_INTERVAL = 500
|
||||
DIGITAL_INPUTS_UPDATE_INTERVAL = 200
|
||||
NOT_ACTIVE_CHECK_INTERVAL = 2000
|
||||
|
||||
def create_control_tab(notebook, adc, shift_reg, pwm1, pwm2):
|
||||
frame = ttk.Frame(notebook)
|
||||
notebook.add(frame, text="Controls")
|
||||
@ -16,47 +22,101 @@ def create_control_tab(notebook, adc, shift_reg, pwm1, pwm2):
|
||||
digital_output_states = [tk.BooleanVar(value=False) for _ in range(8)]
|
||||
adc_values = [tk.StringVar(value="0.00V") for _ in range(8)]
|
||||
pwm_values = [tk.IntVar(value=0), tk.IntVar(value=0)]
|
||||
output_buttons = {} # Store button references to change colors
|
||||
|
||||
def update_inputs():
|
||||
if not updating_enabled:
|
||||
frame.after(NOT_ACTIVE_CHECK_INTERVAL, update_inputs)
|
||||
return
|
||||
for i, pin in enumerate(GPIO_DIGITAL_INPUTS.values()):
|
||||
digital_input_states[i].set("HIGH" if GPIO.input(pin) else "LOW")
|
||||
frame.after(500, update_inputs)
|
||||
frame.after(DIGITAL_INPUTS_UPDATE_INTERVAL, update_inputs)
|
||||
|
||||
def update_adc():
|
||||
if not updating_enabled:
|
||||
frame.after(NOT_ACTIVE_CHECK_INTERVAL, update_adc)
|
||||
return
|
||||
for i, adc_channel in enumerate(ADC_CHANNELS.values()):
|
||||
value = adc.read(adc_channel)
|
||||
adc_values[i].set(f"{round(value * 12 / 4095, 2)}V")
|
||||
frame.after(1000, update_adc)
|
||||
frame.after(ADC_VALUES_UPDATE_INTERVAL, update_adc)
|
||||
|
||||
def toggle_output(index):
|
||||
shift_reg.set_pin(index, digital_output_states[index].get())
|
||||
""" Toggle shift register output and update button color. """
|
||||
new_state = not digital_output_states[index].get()
|
||||
digital_output_states[index].set(new_state)
|
||||
shift_reg.set_pin(index, new_state)
|
||||
|
||||
def update_pwm(channel, value):
|
||||
duty_cycle = int(float(value))
|
||||
if channel == 0:
|
||||
pwm1.ChangeDutyCycle(duty_cycle)
|
||||
else:
|
||||
pwm2.ChangeDutyCycle(duty_cycle)
|
||||
if index in output_buttons:
|
||||
for btn in output_buttons[index]:
|
||||
btn.configure(bg="green" if new_state else "red", activebackground="green" if new_state else "red")
|
||||
|
||||
# UI Layout
|
||||
style = ttk.Style()
|
||||
style.configure("TScale", thickness=30) # Increases slider thickness
|
||||
style.configure("TScale", thickness=60)
|
||||
style.configure("TButton", font=("Arial", 18), padding=5)
|
||||
|
||||
control_frame = ttk.Frame(frame, padding=30)
|
||||
control_frame.pack(expand=True, fill="both")
|
||||
control_frame = ttk.Frame(frame, padding=40)
|
||||
control_frame.grid(row=0, column=0, sticky="nsew")
|
||||
|
||||
frame.grid_rowconfigure(0, weight=1)
|
||||
frame.grid_rowconfigure(1, weight=0)
|
||||
frame.grid_columnconfigure(0, weight=1)
|
||||
|
||||
for i in range(8):
|
||||
ttk.Label(control_frame, text=f"ADC {i+1}:", font=("Arial", 14)).grid(row=i, column=0, sticky="e")
|
||||
ttk.Label(control_frame, textvariable=adc_values[i], width=10, font=("Arial", 14)).grid(row=i, column=1, sticky="w")
|
||||
ttk.Label(control_frame, text=f"IN {i+1}:", font=("Arial", 14)).grid(row=i, column=2, sticky="e")
|
||||
ttk.Label(control_frame, textvariable=digital_input_states[i], width=6, font=("Arial", 14)).grid(row=i, column=3, sticky="w")
|
||||
btn = ttk.Checkbutton(control_frame, text=f"OUT {i+1}", variable=digital_output_states[i], command=lambda i=i: toggle_output(i))
|
||||
btn.grid(row=i, column=4, sticky="w")
|
||||
ttk.Label(control_frame, text=f"ADC {i}:", font=("Arial", 18)).grid(row=i, column=0, sticky="e")
|
||||
ttk.Label(control_frame, textvariable=adc_values[i], width=10, font=("Arial", 18)).grid(row=i, column=1, sticky="w")
|
||||
ttk.Label(control_frame, text=f"IN {i}:", font=("Arial", 18)).grid(row=i, column=2, sticky="e", padx=20)
|
||||
ttk.Label(control_frame, textvariable=digital_input_states[i], width=6, font=("Arial", 18)).grid(row=i, column=3, sticky="w")
|
||||
|
||||
for i in range(2):
|
||||
ttk.Label(control_frame, text=f"PWM{i+1}:", font=("Arial", 14)).grid(row=i, column=5, sticky="e")
|
||||
slider = ttk.Scale(control_frame, from_=0, to=100, orient="horizontal", length=400, variable=pwm_values[i], command=lambda val, i=i: update_pwm(i, val), style="TScale")
|
||||
slider.grid(row=i, column=6, sticky="w", pady=10) # Added spacing with `pady=10`
|
||||
btn = tk.Button(control_frame, text=f"OUT {i}", font=("Arial", 16), width=10, bg="red", activebackground="red", command=lambda i=i: toggle_output(i))
|
||||
btn.grid(row=i, column=4, sticky="w", padx=20)
|
||||
|
||||
output_buttons.setdefault(i, []).append(btn)
|
||||
|
||||
if i == 0:
|
||||
buzzer_btn = tk.Button(control_frame, text="BUZZER", font=("Arial", 16), width=10, bg="red", activebackground="red", command=lambda: toggle_output(0))
|
||||
buzzer_btn.grid(row=i, column=5, padx=20)
|
||||
output_buttons[0].append(buzzer_btn)
|
||||
|
||||
if i == 1:
|
||||
relay2_btn = tk.Button(control_frame, text="RELAY2", font=("Arial", 16), width=10, bg="red", activebackground="red", command=lambda: toggle_output(1))
|
||||
relay2_btn.grid(row=i, column=5, padx=20)
|
||||
output_buttons[1].append(relay2_btn)
|
||||
|
||||
if i == 2:
|
||||
relay1_btn = tk.Button(control_frame, text="RELAY1", font=("Arial", 16), width=10, bg="red", activebackground="red", command=lambda: toggle_output(2))
|
||||
relay1_btn.grid(row=i, column=5, padx=20)
|
||||
output_buttons[2].append(relay1_btn)
|
||||
|
||||
pwm_frame = ttk.Frame(frame, padding=20)
|
||||
pwm_frame.grid(row=1, column=0, sticky="ew")
|
||||
|
||||
pwm_frame.columnconfigure(0, weight=0)
|
||||
pwm_frame.columnconfigure(1, weight=1)
|
||||
pwm_frame.columnconfigure(2, weight=0)
|
||||
|
||||
pwm1_label = ttk.Label(pwm_frame, text="PWM1:", font=("Arial", 18))
|
||||
pwm1_label.grid(row=0, column=0, padx=20, sticky="e")
|
||||
|
||||
pwm1_slider = ttk.Scale(
|
||||
pwm_frame, from_=0, to=100, orient="horizontal", length=400,
|
||||
variable=pwm_values[0], command=lambda val: pwm1.ChangeDutyCycle(int(float(val)))
|
||||
)
|
||||
pwm1_slider.grid(row=0, column=1, columnspan=2, sticky="we", padx=10)
|
||||
|
||||
pwm2_label = ttk.Label(pwm_frame, text="PWM2:", font=("Arial", 18))
|
||||
pwm2_label.grid(row=1, column=0, padx=20, sticky="e")
|
||||
|
||||
pwm2_slider = ttk.Scale(
|
||||
pwm_frame, from_=0, to=100, orient="horizontal", length=400,
|
||||
variable=pwm_values[1], command=lambda val: pwm2.ChangeDutyCycle(int(float(val)))
|
||||
)
|
||||
pwm2_slider.grid(row=1, column=1, columnspan=2, sticky="we", padx=10)
|
||||
|
||||
update_inputs()
|
||||
update_adc()
|
||||
|
||||
def set_updating_enabled(is_active):
|
||||
global updating_enabled
|
||||
updating_enabled = is_active
|
||||
print(f"control tab: set updating_enabled to {updating_enabled}")
|
||||
|
@ -1,5 +1,6 @@
|
||||
import sys
|
||||
import os
|
||||
import threading
|
||||
import tkinter as tk
|
||||
from tkinter import ttk
|
||||
import RPi.GPIO as GPIO
|
||||
@ -10,47 +11,53 @@ import time
|
||||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
||||
from interface_board_pins import * # Import pin assignments
|
||||
|
||||
# Adjusted Constants
|
||||
DIGITAL_PLOT_UPDATE_INTERVAL = 50 # 50ms (20 FPS) is smooth enough
|
||||
NOT_ACTIVE_CHECK_INTERVAL = 2000 # Check inactive tabs less frequently
|
||||
MAX_HISTORY = 100 # Keep last 100 values for scrolling
|
||||
|
||||
updating_enabled = False # Track if the tab is active
|
||||
input_channels = list(range(8))
|
||||
data = {ch: [0] * MAX_HISTORY for ch in input_channels} # Preallocate data
|
||||
time_data = list(range(-MAX_HISTORY, 0)) # Simulated time axis
|
||||
|
||||
|
||||
def create_digital_plot_tab(notebook):
|
||||
frame = ttk.Frame(notebook)
|
||||
notebook.add(frame, text="Digital Inputs")
|
||||
|
||||
figure = Figure(figsize=(8, 5), dpi=100)
|
||||
ax = figure.add_subplot(1, 1, 1)
|
||||
ax.set_title("Digital Input States Over Time")
|
||||
ax.set_xlabel("Time (s)")
|
||||
ax.set_ylabel("State (0=LOW, 1=HIGH)")
|
||||
ax.set_ylim(-0.2, 1.2)
|
||||
|
||||
ax.set_xlim(-MAX_HISTORY, 0) # Keep time axis fixed
|
||||
canvas = FigureCanvasTkAgg(figure, master=frame)
|
||||
canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True)
|
||||
|
||||
input_channels = list(range(8))
|
||||
data = {ch: [] for ch in input_channels}
|
||||
time_data = []
|
||||
# Initialize lines for fast updates
|
||||
lines = {ch: ax.step(time_data, data[ch], where="post")[0] for ch in input_channels}
|
||||
|
||||
def update_plot():
|
||||
current_time = time.time()
|
||||
if len(time_data) > 50:
|
||||
if not updating_enabled:
|
||||
frame.after(NOT_ACTIVE_CHECK_INTERVAL, update_plot)
|
||||
return
|
||||
|
||||
# Shift existing data left
|
||||
for ch in input_channels:
|
||||
data[ch].pop(0)
|
||||
time_data.pop(0)
|
||||
data[ch].append(GPIO.input(GPIO_DIGITAL_INPUTS[ch]))
|
||||
|
||||
time_data.append(current_time)
|
||||
# Update only the y-data for efficiency
|
||||
for ch in input_channels:
|
||||
state = GPIO.input(GPIO_DIGITAL_INPUTS[ch])
|
||||
data[ch].append(state)
|
||||
lines[ch].set_ydata(data[ch])
|
||||
|
||||
ax.clear()
|
||||
ax.set_title("Digital Input States Over Time")
|
||||
ax.set_xlabel("Time (s)")
|
||||
ax.set_ylabel("State (0=LOW, 1=HIGH)")
|
||||
ax.set_ylim(-0.2, 1.2)
|
||||
|
||||
for ch in input_channels:
|
||||
ax.step(time_data, data[ch], label=f"IN {ch+1}", where="post")
|
||||
|
||||
ax.legend(loc="upper right")
|
||||
canvas.draw()
|
||||
frame.after(500, update_plot)
|
||||
canvas.draw_idle() # More efficient than draw()
|
||||
frame.after(DIGITAL_PLOT_UPDATE_INTERVAL, update_plot)
|
||||
|
||||
update_plot()
|
||||
|
||||
|
||||
def set_updating_enabled(is_active):
|
||||
global updating_enabled
|
||||
updating_enabled = is_active
|
||||
print(f"digital_plot tab: set updating_enabled to {updating_enabled}")
|
||||
|
||||
|
21
rpi-scripts/gui/tab_exit.py
Normal file
21
rpi-scripts/gui/tab_exit.py
Normal file
@ -0,0 +1,21 @@
|
||||
|
||||
import tkinter as tk
|
||||
from tkinter import ttk
|
||||
|
||||
def create_exit_tab(notebook, root, pwm1, pwm2):
|
||||
frame = ttk.Frame(notebook)
|
||||
notebook.add(frame, text="EXIT")
|
||||
|
||||
ttk.Label(frame, text="Exit the GUI", font=("Arial", 20)).pack(pady=20)
|
||||
|
||||
def exit_program():
|
||||
pwm1.stop()
|
||||
pwm2.stop()
|
||||
root.quit()
|
||||
root.destroy()
|
||||
|
||||
exit_button = ttk.Button(frame, text="Exit Application", command=exit_program, style="TButton")
|
||||
exit_button.pack(pady=20)
|
||||
|
||||
style = ttk.Style()
|
||||
style.configure("TButton", font=("Arial", 18), padding=10)
|
Loading…
x
Reference in New Issue
Block a user